Physics Fabrication And Applications Of Multilayered Structures

Download Physics Fabrication And Applications Of Multilayered Structures PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Physics Fabrication And Applications Of Multilayered Structures book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Physics, Fabrication, and Applications of Multilayered Structures

Author: Claude Weisbuch
language: en
Publisher: Springer Science & Business Media
Release Date: 2013-06-29
Low-dimensional materials are of fundamental interest in physics and chemistry and have also found a wide variety of technological applica tions in fields ranging from microelectronics to optics. Since 1986, several seminars and summer schools devoted to low-dimensional systems have been supported by NATO. The present one, Physics, Fabrication and Applications of Multilayered structures, brought together specialists from different fields in order to review fabrication techniques, charac terization methods, physics and applications. Artificially layered materials are attractive because alternately layering two (or more) elements, by evaporation or sputtering, is a way to obtain new materials with (hopefully) new physical properties that pure materials or alloys do not allow. These new possibilities can be ob tained in electronic transport, optics, magnetism or the reflectivity of x-rays and slow neutrons. By changing the components and the thickness of the layers one can track continuously how the new properties appear and follow the importance of the multilayer structure of the materials. In addition, with their large number of interfaces the study of inter face properties becomes easier in multilayered structures than in mono layers or bilayers. As a rule, the role of the interface quality, and also the coupling between layers, increases as the thickness of the layer decreases. Several applications at the development stage require layer thicknesses of just a few atomic layers.
Electron Microscopy and Analysis 1997, Proceedings of the Institute of Physics Electron Microscopy and Analysis Group Conference, University of Cambridge, 2-5 September 1997

Electron Microscopy and Analysis 1997 celebrates the centenary anniversary of the discovery of the electron by J.J. Thomson in Cambridge and the fiftieth anniversary of this distinguished Institute group. The book includes papers on the early history of electron microscopy (from P. Hawkes), the development of the scanning electron microscope at Cambridge (from K. Smith), electron energy loss spectroscopy (from L.M. Brown), imaging methods (from J. Spence), and the future of electron microscopy (from C. Humphreys). Covering a wide range of applications of advanced techniques, it discusses electron imaging, electron energy-loss and x-ray analysis, and scanning probe and electron beam microscopies. This volume is a handy reference for professionals using microscopes in all areas of physics, materials science, metallurgy, and surface science to gain an overview of developments in our understanding of materials microstructure and of advances in microscope interrogation techniques.
Electron Microscopy and Analysis 1997, Proceedings of the Institute of Physics Electron Microscopy and Analysis Group Conference, University of Cambridge, 2-5 September 1997

Electron Microscopy and Analysis 1997 celebrates the centenary anniversary of the discovery of the electron by J.J. Thomson in Cambridge and the fiftieth anniversary of this distinguished Institute group. The book includes papers on the early history of electron microscopy (from P. Hawkes), the development of the scanning electron microscope at Cambridge (from K. Smith), electron energy loss spectroscopy (from L.M. Brown), imaging methods (from J. Spence), and the future of electron microscopy (from C. Humphreys). Covering a wide range of applications of advanced techniques, it discusses electron imaging, electron energy-loss and x-ray analysis, and scanning probe and electron beam microscopies. This volume is a handy reference for professionals using microscopes in all areas of physics, materials science, metallurgy, and surface science to gain an overview of developments in our understanding of materials microstructure and of advances in microscope interrogation techniques.