Physical Aspects Of Fracture


Download Physical Aspects Of Fracture PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Physical Aspects Of Fracture book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Rock Fractures and Fluid Flow


Rock Fractures and Fluid Flow

Author: Committee on Fracture Characterization and Fluid Flow

language: en

Publisher: National Academies Press

Release Date: 1996-09-10


DOWNLOAD





Scientific understanding of fluid flow in rock fractures--a process underlying contemporary earth science problems from the search for petroleum to the controversy over nuclear waste storage--has grown significantly in the past 20 years. This volume presents a comprehensive report on the state of the field, with an interdisciplinary viewpoint, case studies of fracture sites, illustrations, conclusions, and research recommendations. The book addresses these questions: How can fractures that are significant hydraulic conductors be identified, located, and characterized? How do flow and transport occur in fracture systems? How can changes in fracture systems be predicted and controlled? Among other topics, the committee provides a geomechanical understanding of fracture formation, reviews methods for detecting subsurface fractures, and looks at the use of hydraulic and tracer tests to investigate fluid flow. The volume examines the state of conceptual and mathematical modeling, and it provides a useful framework for understanding the complexity of fracture changes that occur during fluid pumping and other engineering practices. With a practical and multidisciplinary outlook, this volume will be welcomed by geologists, petroleum geologists, geoengineers, geophysicists, hydrologists, researchers, educators and students in these fields, and public officials involved in geological projects.

Cracks and Fracture


Cracks and Fracture

Author: K. Bertram Broberg

language: en

Publisher: Elsevier

Release Date: 1999-02-24


DOWNLOAD





Cracks and Fracture consists of nine chapters in logical sequence. In two introductory chapters, physical processes in the vicinity of the crack edge are discussed and the fracture process is described. Chapter 3 develops general basic concepts and relations in crack mechanics, such as path independent integrals, stress intensity factors and energy flux into the crack edge region. Chapters 4-7 deal with elastostatic cracks, stationary or slowly moving elastic-plastic cracks, elastodynamic crack mechanics and elastoplastic aspects of fracture, including dynamic fracture mechanics. Appendices include general formulae, the basic theory of analytic functions, introduction to Laplace and Hankel transforms and description of certain basic relations, for instance for stress waves in solids. There is an extensive bibliography, containing references to both classical and recent work, and a comprehensive index. - Presents an extensive bibliography containing references to both classical and recent works and a comprehensive index - Appendices include general formulas, the basic theory of analytic functions, introduction to Laplace and Hankel transforms, and descriptions of certain basic relations, for instance for stress waves in solids

Physical Aspects of Fracture


Physical Aspects of Fracture

Author: Elisabeth Bouchaud

language: en

Publisher: Springer Science & Business Media

Release Date: 2012-12-06


DOWNLOAD





The main scope of this Cargese NATO Advanced Study Institute (June 5-17 2000) was to bring together a number of international experts, covering a large spectrum of the various Physical Aspects of Fracture. As a matter of fact, lecturers as well as participants were coming from various scientific communities: mechanics, physics, materials science, with the common objective of progressing towards a multi-scale description of fracture. This volume includes papers on most materials of practical interest: from concrete to ceramics through metallic alloys, glasses, polymers and composite materials. The classical fields of damage and fracture mechanisms are addressed (critical and sub-critical quasi-static crack propagation, stress corrosion, fatigue, fatigue-corrosion . . . . as well as dynamic fracture). Brittle and ductile fractures are considered and a balance has been carefully kept between experiments, simulations and theoretical models, and between the contributions of the various communities. New topics in damage and fracture mechanics - the effect of disorder and statistical aspects, dynamic fracture, friction and fracture of interfaces - were also explored. This large overview on the Physical Aspects of Fracture shows that the old barriers built between the different scales will soon "fracture". It is no more unrealistic to imagine that a crack initiated through a molecular dynamics description could be propagated at the grain level thanks to dislocation dynamics included in a crystal plasticity model, itself implemented in a finite element code. Linking what happens at the atomic scale to fracture of structures as large as a dam is the new emerging challenge.