Physical And Material Properties Of High Temperature Superconductors

Download Physical And Material Properties Of High Temperature Superconductors PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Physical And Material Properties Of High Temperature Superconductors book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Physical Properties of High-Temperature Superconductors

A much-needed update on complex high-temperature superconductors, focusing on materials aspects; this timely book coincides with a recent major break-through of the discovery of iron-based superconductors. It provides an overview of materials aspects of high-temperature superconductors, combining introductory aspects, description of new physics, material aspects, and a description of the material properties This title is suitable for researchers in materials science, physics and engineering. Also for technicians interested in the applications of superconductors, e.g. as biomagnets
High-Temperature Superconductors: Materials, Properties, and Applications

Author: Rainer Wesche
language: en
Publisher: Springer Science & Business Media
Release Date: 2013-11-27
The discovery by J. G. Bednorz and K. A. Mtllier in 1986 that the superconducting state can exist in oxides at temperatures above 30 K stimulated research in the field of superconductivity and opened up a new field of research. Within a few years a large number of cuprate superconductors with transition temperatures well above the boiling point of liquid nitrogen have been found. The possibility of using liquid nitrogen as coolant re-stimulated interest in power applications of supercon ductivity. In this book an overview of the known high-Te superconductors and their physical properties is presented. Aspects related to conductor fabrication and high-current applications are emphasised. The material should be suitable for use in graduate level courses on superconductivity. Researchers in the field may profit from the large number of tables and references describing its status at the end of 1997. An introduction to high-To superconductivity must be based on the fundamental physical principles of normal-state electrical conductivity and the well-known characteristics of conventional superconductors. In Chapter 2 this background is provided. Crystal structures, anisotropic properties and general trends of the critical temperatures of the cuprate superconductors are described in Chapters 3 and 4. The processing of superconductor powders addressed in Chapter 5 affects considerably the current-carrying capacity of high-T. wires. In Chapter 6 several fabrication techniques for superconducting wires are described. In addition, the factors limiting the transport critical currents ofhigh-Te wires are discussed.
High-temperature Superconducting Materials Science and Engineering

This book explores the fascinating field of high-temperature superconductivity. Basic concepts-including experimental techniques and theoretical issues-are discussed in a clear, systematic manner. In addition, the most recent research results in the measurements, materials synthesis and processing, and characterization of physical properties of high-temperature superconductors are presented. Researchers and students alike can use this book as a comprehensive introduction not only to superconductivity but also to materials-related research in electromagnetic ceramics. Special features of the book: presents recent developments in vortex-state properties, defects characterization, and phase equilibrium introduces basic concepts for experimental techniques at low temperatures and high magnetic fields provides a valuable reference for materials-related research discusses potential industrial applications of high-temperature superconductivity includes novel processing technologies for thin film and bulk materials suggests areas of research and specific problems whose solution can make high-Tc superconductors a practical reality