Photon Counting Statistics Of Multimode Squeezed Light

Download Photon Counting Statistics Of Multimode Squeezed Light PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Photon Counting Statistics Of Multimode Squeezed Light book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Theory of Nonclassical States of Light

The term 'nonclassical states' refers to the quantum states that cannot be produced in the usual sources of light, such as lasers or lamps, rather than those requiring more sophisticated apparatus for their production. Theory of Non-classical States of Light describes the current status of the theory of nonclassical states of light including many new and important results as well as introductory material and the history of the subject. The authors concentrate on the most important types of nonclassical states, namely squeezed, even/odd ('Schrodinger cat') and binomial states, including their generalizations. However, a review of other types of nonclassical is also given in the introduction, and methods for generating nonclassical states on various processes of light-matter interaction, their phase-space description, and the time evolution of nonclassical states in these processes is presented in separate chapters. This contributed volume contains all of the necessary formulae and references required to gain a good understanding of the principles and current status of the field. It will provide a valuable information resource for advanced students and researchers in quantum physics.
Photons In Fock Space And Beyond (In 3 Volumes)

Author: Reinhard Honegger
language: en
Publisher: World Scientific
Release Date: 2015-04-22
The three-volume major reference “Photons in Fock Space and Beyond” undertakes a new mathematical and conceptual foundation of the theory of light emphasizing mesoscopic radiation systems. The quantum optical notions are generalized beyond Fock representations where the richness of an infinite dimensional quantum field system, with its mathematical difficulties and theoretical possibilities, is fully taken into account. It aims at a microscopic formulation of a mesoscopic model class which covers in principle all stages of the generation and propagation of light within a unified and well-defined conceptual frame.The dynamics of the interacting systems is founded — according to original works of the authors — on convergent perturbation series and describes the developments of the quantized microscopic as well as the classical collective degrees of freedom at the same time. The achieved theoretical unification fits especially to laser and microwave applications inheriting objective information over quantum noise.A special advancement is the incorporation of arbitrary multiply connected cavities where ideal conductor boundary conditions are imposed. From there arises a new category of classical and quantized field parts, apparently not treated in Quantum Electrodynamics before. In combination with gauge theory, the additional “cohomological fields” explain topological quantum effects in superconductivity. Further applications are to be expected for optoelectronic and optomechanical systems.