Philosophy Of Arithmetic

Download Philosophy Of Arithmetic PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Philosophy Of Arithmetic book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Philosophy of Arithmetic

Author: Edmund Husserl
language: en
Publisher: Springer Science & Business Media
Release Date: 2012-12-06
In his first book, Philosophy of Arithmetic, Edmund Husserl provides a carefully worked out account of number as a categorial or formal feature of the objective world, and of arithmetic as a symbolic technique for mastering the infinite field of numbers for knowledge. It is a realist account of numbers and number relations that interweaves them into the basic structure of the universe and into our knowledge of reality. It provides an answer to the question of how arithmetic applies to reality, and gives an account of how, in general, formalized systems of symbols work in providing access to the world. The "appendices" to this book provide some of Husserl's subsequent discussions of how formalisms work, involving David Hilbert's program of completeness for arithmetic. "Completeness" is integrated into Husserl's own problematic of the "imaginary", and allows him to move beyond the analysis of "representations" in his understanding of the logic of mathematics. Husserl's work here provides an alternative model of what "conceptual analysis" should be - minus the "linguistic turn", but inclusive of language and linguistic meaning. In the process, he provides case after case of "Phenomenological Analysis" - fortunately unencumbered by that title - of the convincing type that made Husserl's life and thought a fountainhead of much of the most important philosophical work of the twentieth Century in Europe. Many Husserlian themes to be developed at length in later writings first emerge here: Abstraction, internal time consciousness, polythetic acts, acts of higher order ('founded' acts), Gestalt qualities and their role in knowledge, formalization (as opposed to generalization), essence analysis, and so forth. This volume is a window on a period of rich and illuminating philosophical activity that has been rendered generally inaccessible by the supposed "revolution" attributed to "Analytic Philosophy" so-called. Careful exposition and critique is given to every serious alternative account of number and number relations available at the time. Husserl's extensive and trenchant criticisms of Gottlob Frege's theory of number and arithmetic reach far beyond those most commonly referred to in the literature on their views.
Introducing Philosophy of Mathematics

What is mathematics about? Does the subject-matter of mathematics exist independently of the mind or are they mental constructions? How do we know mathematics? Is mathematical knowledge logical knowledge? And how is mathematics applied to the material world? In this introduction to the philosophy of mathematics, Michele Friend examines these and other ontological and epistemological problems raised by the content and practice of mathematics. Aimed at a readership with limited proficiency in mathematics but with some experience of formal logic it seeks to strike a balance between conceptual accessibility and correct representation of the issues. Friend examines the standard theories of mathematics - Platonism, realism, logicism, formalism, constructivism and structuralism - as well as some less standard theories such as psychologism, fictionalism and Meinongian philosophy of mathematics. In each case Friend explains what characterises the position and where the divisions between them lie, including some of the arguments in favour and against each. This book also explores particular questions that occupy present-day philosophers and mathematicians such as the problem of infinity, mathematical intuition and the relationship, if any, between the philosophy of mathematics and the practice of mathematics. Taking in the canonical ideas of Aristotle, Kant, Frege and Whitehead and Russell as well as the challenging and innovative work of recent philosophers like Benacerraf, Hellman, Maddy and Shapiro, Friend provides a balanced and accessible introduction suitable for upper-level undergraduate courses and the non-specialist.
Wittgenstein's Philosophy of Mathematics

Wittgenstein's role was vital in establishing mathematics as one of this century's principal areas of philosophic inquiry. In this book, the three phases of Wittgenstein's reflections on mathematics are viewed as a progressive whole, rather than as separate entities. Frascolla builds up a systematic construction of Wittgenstein's representation of the role of arithmetic in the theory of logical operations. He also presents a new interpretation of Wittgenstein's rule-following considerations - the `community view of internal relations'.