Perturbation Analysis Of Optimization Problems


Download Perturbation Analysis Of Optimization Problems PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Perturbation Analysis Of Optimization Problems book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Perturbation Analysis of Optimization Problems


Perturbation Analysis of Optimization Problems

Author: J.Frederic Bonnans

language: en

Publisher: Springer Science & Business Media

Release Date: 2000-05-11


DOWNLOAD





A presentation of general results for discussing local optimality and computation of the expansion of value function and approximate solution of optimization problems, followed by their application to various fields, from physics to economics. The book is thus an opportunity for popularizing these techniques among researchers involved in other sciences, including users of optimization in a wide sense, in mechanics, physics, statistics, finance and economics. Of use to research professionals, including graduate students at an advanced level.

Perturbation Analysis of Optimization Problems


Perturbation Analysis of Optimization Problems

Author: J.Frederic Bonnans

language: en

Publisher: Springer Science & Business Media

Release Date: 2013-11-22


DOWNLOAD





The main subject of this book is perturbation analysis of continuous optimization problems. In the last two decades considerable progress has been made in that area, and it seems that it is time now to present a synthetic view of many important results that apply to various classes of problems. The model problem that is considered throughout the book is of the form (P) Min/(x) subjectto G(x) E K. xeX Here X and Y are Banach spaces, K is a closed convex subset of Y, and / : X -+ IR and G : X -+ Y are called the objective function and the constraint mapping, respectively. We also consider a parameteriZed version (P ) of the above u problem, where the objective function / (x, u) and the constraint mapping G(x, u) are parameterized by a vector u varying in a Banach space U. Our aim is to study continuity and differentiability properties of the optimal value v(u) and the set S(u) of optimal solutions of (P ) viewed as functions of the parameter vector u.

Convex Optimization


Convex Optimization

Author: Stephen P. Boyd

language: en

Publisher: Cambridge University Press

Release Date: 2004-03-08


DOWNLOAD





Convex optimization problems arise frequently in many different fields. This book provides a comprehensive introduction to the subject, and shows in detail how such problems can be solved numerically with great efficiency. The book begins with the basic elements of convex sets and functions, and then describes various classes of convex optimization problems. Duality and approximation techniques are then covered, as are statistical estimation techniques. Various geometrical problems are then presented, and there is detailed discussion of unconstrained and constrained minimization problems, and interior-point methods. The focus of the book is on recognizing convex optimization problems and then finding the most appropriate technique for solving them. It contains many worked examples and homework exercises and will appeal to students, researchers and practitioners in fields such as engineering, computer science, mathematics, statistics, finance and economics.