Pattern Recognition Statistical Structural And Neural Approaches

Download Pattern Recognition Statistical Structural And Neural Approaches PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Pattern Recognition Statistical Structural And Neural Approaches book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
PATTERN RECOGNITION: STATISTICAL, STRUCTURAL AND NEURAL APPROACHES

About The Book: This book explores the heart of pattern recognition concepts, methods and applications using statistical, syntactic and neural approaches. Divided into four sections, it clearly demonstrates the similarities and differences among the three approaches. The second part deals with the statistical pattern recognition approach, starting with a simple example and finishing with unsupervised learning through clustering. Section three discusses the syntactic approach and explores such topics as the capabilities of string grammars and parsing; higher dimensional representations and graphical approaches. Part four presents an excellent overview of the emerging neural approach including an examination of pattern associations and feedforward nets. Along with examples, each chapter provides the reader with pertinent literature for a more in-depth study of specific topics.
Pattern Recognition

The heart of pattern recognition concepts, methods and applications are explored in this textbook, using statistical, syntactic and neural approaches. The book clearly demonstrates the similarities and differences among the three approaches and each chapter provides the reader with examples and pertinent literature for a more in-depth study of specific topics.
Introduction to Pattern Recognition

This book is an introduction to pattern recognition, meant for undergraduate and graduate students in computer science and related fields in science and technology. Most of the topics are accompanied by detailed algorithms and real world applications. In addition to statistical and structural approaches, novel topics such as fuzzy pattern recognition and pattern recognition via neural networks are also reviewed. Each topic is followed by several examples solved in detail. The only prerequisites for using this book are a one-semester course in discrete mathematics and a knowledge of the basic preliminaries of calculus, linear algebra and probability theory.