Pattern Recognition And Image Preprocessing


Download Pattern Recognition And Image Preprocessing PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Pattern Recognition And Image Preprocessing book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Pattern Recognition and Image Preprocessing


Pattern Recognition and Image Preprocessing

Author: Sing T. Bow

language: en

Publisher: CRC Press

Release Date: 2002-01-11


DOWNLOAD





Describing non-parametric and parametric theoretic classification and the training of discriminant functions, this second edition includes new and expanded sections on neural networks, Fisher's discriminant, wavelet transform, and the method of principal components. It contains discussions on dimensionality reduction and feature selection; novel computer system architectures; proven algorithms for solutions to common roadblocks in data processing; computing models including the Hamming net, the Kohonen self-organizing map, and the Hopfield net; detailed appendices with data sets illustrating key concepts in the text; and more.

Practical Machine Learning and Image Processing


Practical Machine Learning and Image Processing

Author: Himanshu Singh

language: en

Publisher: Apress

Release Date: 2019-02-26


DOWNLOAD





Gain insights into image-processing methodologies and algorithms, using machine learning and neural networks in Python. This book begins with the environment setup, understanding basic image-processing terminology, and exploring Python concepts that will be useful for implementing the algorithms discussed in the book. You will then cover all the core image processing algorithms in detail before moving onto the biggest computer vision library: OpenCV. You’ll see the OpenCV algorithms and how to use them for image processing. The next section looks at advanced machine learning and deep learning methods for image processing and classification. You’ll work with concepts such as pulse coupled neural networks, AdaBoost, XG boost, and convolutional neural networks for image-specific applications. Later you’ll explore how models are made in real time and then deployed using various DevOps tools. All the conceptsin Practical Machine Learning and Image Processing are explained using real-life scenarios. After reading this book you will be able to apply image processing techniques and make machine learning models for customized application. What You Will Learn Discover image-processing algorithms and their applications using Python Explore image processing using the OpenCV library Use TensorFlow, scikit-learn, NumPy, and other libraries Work with machine learning and deep learning algorithms for image processing Apply image-processing techniques to five real-time projects Who This Book Is For Data scientists and software developers interested in image processing and computer vision.

Image Processing and Pattern Recognition


Image Processing and Pattern Recognition

Author: Frank Y. Shih

language: en

Publisher: John Wiley & Sons

Release Date: 2010-07-16


DOWNLOAD





A comprehensive guide to the essential principles of image processing and pattern recognition Techniques and applications in the areas of image processing and pattern recognition are growing at an unprecedented rate. Containing the latest state-of-the-art developments in the field, Image Processing and Pattern Recognition presents clear explanations of the fundamentals as well as the most recent applications. It explains the essential principles so readers will not only be able to easily implement the algorithms and techniques, but also lead themselves to discover new problems and applications. Unlike other books on the subject, this volume presents numerous fundamental and advanced image processing algorithms and pattern recognition techniques to illustrate the framework. Scores of graphs and examples, technical assistance, and practical tools illustrate the basic principles and help simplify the problems, allowing students as well as professionals to easily grasp even complicated theories. It also features unique coverage of the most interesting developments and updated techniques, such as image watermarking, digital steganography, document processing and classification, solar image processing and event classification, 3-D Euclidean distance transformation, shortest path planning, soft morphology, recursive morphology, regulated morphology, and sweep morphology. Additional topics include enhancement and segmentation techniques, active learning, feature extraction, neural networks, and fuzzy logic. Featuring supplemental materials for instructors and students, Image Processing and Pattern Recognition is designed for undergraduate seniors and graduate students, engineering and scientific researchers, and professionals who work in signal processing, image processing, pattern recognition, information security, document processing, multimedia systems, and solar physics.