Pattern Recognition And Data Analysis With Applications

Download Pattern Recognition And Data Analysis With Applications PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Pattern Recognition And Data Analysis With Applications book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Data Analysis and Pattern Recognition in Multiple Databases

Author: Animesh Adhikari
language: en
Publisher: Springer Science & Business Media
Release Date: 2013-12-09
Pattern recognition in data is a well known classical problem that falls under the ambit of data analysis. As we need to handle different data, the nature of patterns, their recognition and the types of data analyses are bound to change. Since the number of data collection channels increases in the recent time and becomes more diversified, many real-world data mining tasks can easily acquire multiple databases from various sources. In these cases, data mining becomes more challenging for several essential reasons. We may encounter sensitive data originating from different sources - those cannot be amalgamated. Even if we are allowed to place different data together, we are certainly not able to analyze them when local identities of patterns are required to be retained. Thus, pattern recognition in multiple databases gives rise to a suite of new, challenging problems different from those encountered before. Association rule mining, global pattern discovery and mining patterns of select items provide different patterns discovery techniques in multiple data sources. Some interesting item-based data analyses are also covered in this book. Interesting patterns, such as exceptional patterns, icebergs and periodic patterns have been recently reported. The book presents a thorough influence analysis between items in time-stamped databases. The recent research on mining multiple related databases is covered while some previous contributions to the area are highlighted and contrasted with the most recent developments.
Pattern Recognition and Big Data

Author: Amita Pal
language: en
Publisher: World Scientific Publishing Company
Release Date: 2017
Containing twenty six contributions by experts from all over the world, this book presents both research and review material describing the evolution and recent developments of various pattern recognition methodologies, ranging from statistical, linguistic, fuzzy-set-theoretic, neural, evolutionary computing and rough-set-theoretic to hybrid soft computing, with significant real-life applications. Pattern Recognition and Big Data provides state-of-the-art classical and modern approaches to pattern recognition and mining, with extensive real life applications. The book describes efficient soft and robust machine learning algorithms and granular computing techniques for data mining and knowledge discovery; and the issues associated with handling Big Data. Application domains considered include bioinformatics, cognitive machines (or machine mind developments), biometrics, computer vision, the e-nose, remote sensing and social network analysis.
Pattern Recognition

Author: J.P. Marques de Sá
language: en
Publisher: Springer Science & Business Media
Release Date: 2012-12-06
Pattern recognition currently comprises a vast body of methods supporting the development of numerous applications in many different areas of activity. The generally recognized relevance of pattern recognition methods and techniques lies, for the most part, in the general trend of "intelligent" task emulation, which has definitely pervaded our daily life. Robot assisted manufacture, medical diagnostic systems, forecast of economic variables, exploration of Earth's resources, and analysis of satellite data are just a few examples of activity fields where this trend applies. The pervasiveness of pattern recognition has boosted the number of task specific methodologies and enriched the number of links with other disciplines. As counterbalance to this dispersive tendency there have been, more recently, new theoretical developments that are bridging together many of the classical pattern recognition methods and presenting a new perspective of their links and inner workings. This book has its origin in an introductory course on pattern recognition taught at the Electrical and Computer Engineering Department, Oporto University. From the initial core of this course, the book grew with the intent of presenting a comprehensive and articulated view of pattern recognition methods combined with the intent of clarifying practical issues with the aid of examples and applications to real-life data. The book is primarily addressed to undergraduate and graduate students attending pattern recognition courses of engineering and computer science curricula.