Pattern Mining With Evolutionary Algorithms

Download Pattern Mining With Evolutionary Algorithms PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Pattern Mining With Evolutionary Algorithms book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Data Mining and Knowledge Discovery with Evolutionary Algorithms

Author: Alex A. Freitas
language: en
Publisher: Springer Science & Business Media
Release Date: 2013-11-11
This book addresses the integration of two areas of computer science, namely data mining and evolutionary algorithms. Both these areas have become increas ingly popular in the last few years, and their integration is currently an area of active research. In essence, data mining consists of extracting valid, comprehensible, and in teresting knowledge from data. Data mining is actually an interdisciplinary field, since there are many kinds of methods that can be used to extract knowledge from data. Arguably, data mining mainly uses methods from machine learning (a branch of artificial intelligence) and statistics (including statistical pattern recog nition). Our discussion of data mining and evolutionary algorithms is primarily based on machine learning concepts and principles. In particular, in this book we emphasize the importance of discovering comprehensible, interesting knowledge, which the user can potentially use to make intelligent decisions. In a nutshell, the motivation for applying evolutionary algorithms to data mining is that evolutionary algorithms are robust search methods which perform a global search in the space of candidate solutions (rules or another form of knowl edge representation). In contrast, most rule induction methods perform a local, greedy search in the space of candidate rules. Intuitively, the global search of evolutionary algorithms can discover interesting rules and patterns that would be missed by the greedy search.
Pattern Mining with Evolutionary Algorithms

This book provides a comprehensive overview of the field of pattern mining with evolutionary algorithms. To do so, it covers formal definitions about patterns, patterns mining, type of patterns and the usefulness of patterns in the knowledge discovery process. As it is described within the book, the discovery process suffers from both high runtime and memory requirements, especially when high dimensional datasets are analyzed. To solve this issue, many pruning strategies have been developed. Nevertheless, with the growing interest in the storage of information, more and more datasets comprise such a dimensionality that the discovery of interesting patterns becomes a challenging process. In this regard, the use of evolutionary algorithms for mining pattern enables the computation capacity to be reduced, providing sufficiently good solutions. This book offers a survey on evolutionary computation with particular emphasis on genetic algorithms and genetic programming. Also included is an analysis of the set of quality measures most widely used in the field of pattern mining with evolutionary algorithms. This book serves as a review of the most important evolutionary algorithms for pattern mining. It considers the analysis of different algorithms for mining different type of patterns and relationships between patterns, such as frequent patterns, infrequent patterns, patterns defined in a continuous domain, or even positive and negative patterns. A completely new problem in the pattern mining field, mining of exceptional relationships between patterns, is discussed. In this problem the goal is to identify patterns which distribution is exceptionally different from the distribution in the complete set of data records. Finally, the book deals with the subgroup discovery task, a method to identify a subgroup of interesting patterns that is related to a dependent variable or target attribute. This subgroup of patterns satisfies two essential conditions: interpretability and interestingness.
Fuzzy Modeling and Genetic Algorithms for Data Mining and Exploration

Foundations and ideas -- Principal model types -- Approaches to model building -- Fundamental concepts of fuzzy logic -- Fundamental concepts of fuzzy systems -- Fuzzy SQL and intelligent queries -- Fuzzy clustering -- Fuzzy rule induction -- Fundamental concepts of genetic algorithms -- Genetic resource scheduling optimization -- Genetic tuning of fuzzy models.