Passage Times For Markov Chains

Download Passage Times For Markov Chains PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Passage Times For Markov Chains book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Numerical Solution of Markov Chains

Papers presented at a workshop held January 1990 (location unspecified) cover just about all aspects of solving Markov models numerically. There are papers on matrix generation techniques and generalized stochastic Petri nets; the computation of stationary distributions, including aggregation/disaggregation.
Continuous-Time Markov Chains

Author: William J. Anderson
language: en
Publisher: Springer Science & Business Media
Release Date: 2012-12-06
Continuous time parameter Markov chains have been useful for modeling various random phenomena occurring in queueing theory, genetics, demography, epidemiology, and competing populations. This is the first book about those aspects of the theory of continuous time Markov chains which are useful in applications to such areas. It studies continuous time Markov chains through the transition function and corresponding q-matrix, rather than sample paths. An extensive discussion of birth and death processes, including the Stieltjes moment problem, and the Karlin-McGregor method of solution of the birth and death processes and multidimensional population processes is included, and there is an extensive bibliography. Virtually all of this material is appearing in book form for the first time.
Markov Processes for Stochastic Modeling

This book presents an algebraic development of the theory of countable state space Markov chains with discrete- and continuous-time parameters. A Markov chain is a stochastic process characterized by the Markov prop erty that the distribution of future depends only on the current state, not on the whole history. Despite its simple form of dependency, the Markov property has enabled us to develop a rich system of concepts and theorems and to derive many results that are useful in applications. In fact, the areas that can be modeled, with varying degrees of success, by Markov chains are vast and are still expanding. The aim of this book is a discussion of the time-dependent behavior, called the transient behavior, of Markov chains. From the practical point of view, when modeling a stochastic system by a Markov chain, there are many instances in which time-limiting results such as stationary distributions have no meaning. Or, even when the stationary distribution is of some importance, it is often dangerous to use the stationary result alone without knowing the transient behavior of the Markov chain. Not many books have paid much attention to this topic, despite its obvious importance.