Partial Differential Equations Through Examples And Exercises


Download Partial Differential Equations Through Examples And Exercises PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Partial Differential Equations Through Examples And Exercises book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Partial Differential Equations through Examples and Exercises


Partial Differential Equations through Examples and Exercises

Author: E. Pap

language: en

Publisher: Springer Science & Business Media

Release Date: 2012-12-06


DOWNLOAD





The book Partial Differential Equations through Examples and Exercises has evolved from the lectures and exercises that the authors have given for more than fifteen years, mostly for mathematics, computer science, physics and chemistry students. By our best knowledge, the book is a first attempt to present the rather complex subject of partial differential equations (PDEs for short) through active reader-participation. Thus this book is a combination of theory and examples. In the theory of PDEs, on one hand, one has an interplay of several mathematical disciplines, including the theories of analytical functions, harmonic analysis, ODEs, topology and last, but not least, functional analysis, while on the other hand there are various methods, tools and approaches. In view of that, the exposition of new notions and methods in our book is "step by step". A minimal amount of expository theory is included at the beginning of each section Preliminaries with maximum emphasis placed on well selected examples and exercises capturing the essence of the material. Actually, we have divided the problems into two classes termed Examples and Exercises (often containing proofs of the statements from Preliminaries). The examples contain complete solutions, and also serve as a model for solving similar problems, given in the exercises. The readers are left to find the solution in the exercises; the answers, and occasionally, some hints, are still given. The book is implicitly divided in two parts, classical and abstract.

Exercises in Basic Ring Theory


Exercises in Basic Ring Theory

Author: Grigore Calugareanu

language: en

Publisher: Springer Science & Business Media

Release Date: 2013-03-09


DOWNLOAD





Each undergraduate course of algebra begins with basic notions and results concerning groups, rings, modules and linear algebra. That is, it begins with simple notions and simple results. Our intention was to provide a collection of exercises which cover only the easy part of ring theory, what we have named the "Basics of Ring Theory". This seems to be the part each student or beginner in ring theory (or even algebra) should know - but surely trying to solve as many of these exercises as possible independently. As difficult (or impossible) as this may seem, we have made every effort to avoid modules, lattices and field extensions in this collection and to remain in the ring area as much as possible. A brief look at the bibliography obviously shows that we don't claim much originality (one could name this the folklore of ring theory) for the statements of the exercises we have chosen (but this was a difficult task: indeed, the 28 titles contain approximatively 15.000 problems and our collection contains only 346). The real value of our book is the part which contains all the solutions of these exercises. We have tried to draw up these solutions as detailed as possible, so that each beginner can progress without skilled help. The book is divided in two parts each consisting of seventeen chapters, the first part containing the exercises and the second part the solutions.

Complex Analysis through Examples and Exercises


Complex Analysis through Examples and Exercises

Author: E. Pap

language: en

Publisher: Springer Science & Business Media

Release Date: 2013-03-09


DOWNLOAD





The book Complex Analysis through Examples and Exercises has come out from the lectures and exercises that the author held mostly for mathematician and physists . The book is an attempt to present the rat her involved subject of complex analysis through an active approach by the reader. Thus this book is a complex combination of theory and examples. Complex analysis is involved in all branches of mathematics. It often happens that the complex analysis is the shortest path for solving a problem in real circum stances. We are using the (Cauchy) integral approach and the (Weierstrass) power se ries approach . In the theory of complex analysis, on the hand one has an interplay of several mathematical disciplines, while on the other various methods, tools, and approaches. In view of that, the exposition of new notions and methods in our book is taken step by step. A minimal amount of expository theory is included at the beinning of each section, the Preliminaries, with maximum effort placed on weil selected examples and exercises capturing the essence of the material. Actually, I have divided the problems into two classes called Examples and Exercises (some of them often also contain proofs of the statements from the Preliminaries). The examples contain complete solutions and serve as a model for solving similar problems given in the exercises. The readers are left to find the solution in the exercisesj the answers, and, occasionally, some hints, are still given.