Paraxial Light Beams With Angular Momentum

Download Paraxial Light Beams With Angular Momentum PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Paraxial Light Beams With Angular Momentum book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Paraxial Light Beams with Angular Momentum

Fundamental and applied concepts concerning the ability of light beams to carry a certain mechanical angular momentum (AM) with respect to the propagation axis are reviewed and discussed in this book. In paraxial beams, the total beam AM can be represented as a sum of the spin (SAM) and orbital (OAM) angular momentums. SAM is an attribute of beams with elliptic (circular) polarisation and is related to the spin of photons. OAM is conditioned by the macroscopic transverse energy circulation and does not depend on the beam polarisation state. In turn, the OAM can be divided in two components which reflect different forms of this energy circulation. Important class of beams with OAM, are vortex beams with helical geometric structure. They constitute a full set of azimuthal harmonics characterised by integer index l each possessing AM l per photon. Arbitrary paraxial beam can be represented as a superposition of helical beams with different l. Models of helical beams and methods of their practical generation are discussed. Transverse energy flows in light beams can be described on the basis of a mechanical model assimilating them to fluid bodies; remarkably, in a helical beam the transverse flow distribution exactly corresponds to the laws of the vortex behaviour in other fields of physics (fluid dynamics, electricity). Experiments on transmission of the beam AM to other bodies (optical elements and to suspended microparticles) are discussed. Research prospects and ways of practical utilisation of optical beams with AM are discussed.
The Angular Momentum of Light

Author: David L. Andrews
language: en
Publisher: Cambridge University Press
Release Date: 2012-11-08
Recent developments in the angular momentum of light present fresh challenges to long established concepts and pave the way for new and wide-ranging applications. The scope for structured light such as optical vortices, in particular, now extends from microfluidics to quantum information. This is the first comprehensive edited collection dealing with light carrying spin and orbital angular momentum, covering both fundamental and applied aspects. Written by internationally leading specialists, the chapters have been compiled to reflect the latest scientific progress and to address the multitude of theoretical, experimental and technical issues associated with this vibrant and exciting field. The volume is an authoritative reference for academic researchers and graduate students engaged in theoretical or experimental study of optical angular momentum and its applications. It will also benefit professionals in physics, optics and optical engineering, chemistry and biology.
Twisted Photons

This book deals with applications in several areas of science and technology that make use of light which carries orbital angular momentum. In most practical scenarios, the angular momentum can be decomposed into two independent contributions: the spin angular momentum and the orbital angular momentum. The orbital contribution affords a fundamentally new degree of freedom, with fascinating and wide-spread applications. Unlike spin angular momentum, which is associated with the polarization of light, the orbital angular momentum arises as a consequence of the spatial distribution of the intensity and phase of an optical field, even down to the single photon limit. Researchers have begun to appreciate its implications for our understanding of the ways in which light and matter can interact, and its practical potential in different areas of science and technology.