Parameter Estimation In Stochastic Volatility Models Via Approximate Bayesian Computing

Download Parameter Estimation In Stochastic Volatility Models Via Approximate Bayesian Computing PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Parameter Estimation In Stochastic Volatility Models Via Approximate Bayesian Computing book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Parameter Estimation in Stochastic Volatility Models Via Approximate Bayesian Computing

In this thesis, we propose a generalized Heston model as a tool to estimate volatility. We have used Approximate Bayesian Computing to estimate the parameters of the generalized Heston model. This model was used to examine the daily closing prices of the Shanghai Stock Exchange and the NIKKEI 225 indices. We found that this model was a good fit for shorter time periods around financial crisis. For longer time periods, this model failed to capture the volatility in detail.
Handbook of Approximate Bayesian Computation

As the world becomes increasingly complex, so do the statistical models required to analyse the challenging problems ahead. For the very first time in a single volume, the Handbook of Approximate Bayesian Computation (ABC) presents an extensive overview of the theory, practice and application of ABC methods. These simple, but powerful statistical techniques, take Bayesian statistics beyond the need to specify overly simplified models, to the setting where the model is defined only as a process that generates data. This process can be arbitrarily complex, to the point where standard Bayesian techniques based on working with tractable likelihood functions would not be viable. ABC methods finesse the problem of model complexity within the Bayesian framework by exploiting modern computational power, thereby permitting approximate Bayesian analyses of models that would otherwise be impossible to implement. The Handbook of ABC provides illuminating insight into the world of Bayesian modelling for intractable models for both experts and newcomers alike. It is an essential reference book for anyone interested in learning about and implementing ABC techniques to analyse complex models in the modern world.
Parameter Estimation in Stochastic Volatility Models

Author: Jaya P. N. Bishwal
language: en
Publisher: Springer Nature
Release Date: 2022-08-06
This book develops alternative methods to estimate the unknown parameters in stochastic volatility models, offering a new approach to test model accuracy. While there is ample research to document stochastic differential equation models driven by Brownian motion based on discrete observations of the underlying diffusion process, these traditional methods often fail to estimate the unknown parameters in the unobserved volatility processes. This text studies the second order rate of weak convergence to normality to obtain refined inference results like confidence interval, as well as nontraditional continuous time stochastic volatility models driven by fractional Levy processes. By incorporating jumps and long memory into the volatility process, these new methods will help better predict option pricing and stock market crash risk. Some simulation algorithms for numerical experiments are provided.