Parallelizing Ant Colony Optimization Via Area Of Expertise Learning

Download Parallelizing Ant Colony Optimization Via Area Of Expertise Learning PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Parallelizing Ant Colony Optimization Via Area Of Expertise Learning book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Parallel Metaheuristics

Solving complex optimization problems with parallel metaheuristics Parallel Metaheuristics brings together an international group of experts in parallelism and metaheuristics to provide a much-needed synthesis of these two fields. Readers discover how metaheuristic techniques can provide useful and practical solutions for a wide range of problems and application domains, with an emphasis on the fields of telecommunications and bioinformatics. This volume fills a long-existing gap, allowing researchers and practitioners to develop efficient metaheuristic algorithms to find solutions. The book is divided into three parts: * Part One: Introduction to Metaheuristics and Parallelism, including an Introduction to Metaheuristic Techniques, Measuring the Performance of Parallel Metaheuristics, New Technologies in Parallelism, and a head-to-head discussion on Metaheuristics and Parallelism * Part Two: Parallel Metaheuristic Models, including Parallel Genetic Algorithms, Parallel Genetic Programming, Parallel Evolution Strategies, Parallel Ant Colony Algorithms, Parallel Estimation of Distribution Algorithms, Parallel Scatter Search, Parallel Variable Neighborhood Search, Parallel Simulated Annealing, Parallel Tabu Search, Parallel GRASP, Parallel Hybrid Metaheuristics, Parallel Multi-Objective Optimization, and Parallel Heterogeneous Metaheuristics * Part Three: Theory and Applications, including Theory of Parallel Genetic Algorithms, Parallel Metaheuristics Applications, Parallel Metaheuristics in Telecommunications, and a final chapter on Bioinformatics and Parallel Metaheuristics Each self-contained chapter begins with clear overviews and introductions that bring the reader up to speed, describes basic techniques, and ends with a reference list for further study. Packed with numerous tables and figures to illustrate the complex theory and processes, this comprehensive volume also includes numerous practical real-world optimization problems and their solutions. This is essential reading for students and researchers in computer science, mathematics, and engineering who deal with parallelism, metaheuristics, and optimization in general.
Parallel Problem Solving from Nature, PPSN XI

We are very pleased to present to you this LNCS volume, the proceedings of the 11th International Conference on Parallel Problem Solving from Nature (PPSN 2010). PPSN is one of the most respected and highly regarded c- ference series in evolutionary computation, and indeed in natural computation aswell.Thisbiennialeventwas?rstheldinDortmundin1990, andtheninBr- sels (1992), Jerusalem (1994), Berlin (1996), Amsterdam (1998), Paris (2000), Granada (2002), Birmingham (2004), Reykjavik (2006) and again in Dortmund in 2008. PPSN 2010 received 232 submissions. After an extensive peer review p- cess involving more than 180 reviewers, the program committee chairs went through all the review reports and ranked the papers according to the revi- ers’comments. Each paper wasevaluated by at least three reviewers.Additional reviewers from the appropriate branches of science were invoked to review into disciplinary papers. The top 128 papers were ?nally selected for inclusion in the proceedings and presentation at the conference. This represents an acceptance rate of 55%, which guarantees that PPSN will continue to be one of the c- ferences of choice for bio-inspired computing and metaheuristics researchers all over the world who value the quality over the size of a conference. The papers included in the proceedingsvolumes covera wide range of topics, fromevolutionarycomputationto swarmintelligence, frombio-inspiredcomp- ing to real-world applications. Machine learning and mathematical games s- portedbyevolutionaryalgorithmsaswellasmemetic, agent-orientedsystemsare also represented. They all are the latest and best in natural computation. The proceedings are composed of two volumes divided into nine thematic sections.