Parallel Processing 1980 To 2020


Download Parallel Processing 1980 To 2020 PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Parallel Processing 1980 To 2020 book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Parallel Processing, 1980 to 2020


Parallel Processing, 1980 to 2020

Author: Robert Kuhn

language: en

Publisher: Morgan & Claypool Publishers

Release Date: 2020-10-14


DOWNLOAD





This historical survey of parallel processing from 1980 to 2020 is a follow-up to the authors’ 1981 Tutorial on Parallel Processing, which covered the state of the art in hardware, programming languages, and applications. Here, we cover the evolution of the field since 1980 in: parallel computers, ranging from the Cyber 205 to clusters now approaching an exaflop, to multicore microprocessors, and Graphic Processing Units (GPUs) in commodity personal devices; parallel programming notations such as OpenMP, MPI message passing, and CUDA streaming notation; and seven parallel applications, such as finite element analysis and computer vision. Some things that looked like they would be major trends in 1981, such as big Single Instruction Multiple Data arrays disappeared for some time but have been revived recently in deep neural network processors. There are now major trends that did not exist in 1980, such as GPUs, distributed memory machines, and parallel processing in nearly every commodity device. This book is intended for those that already have some knowledge of parallel processing today and want to learn about the history of the three areas. In parallel hardware, every major parallel architecture type from 1980 has scaled-up in performance and scaled-out into commodity microprocessors and GPUs, so that every personal and embedded device is a parallel processor. There has been a confluence of parallel architecture types into hybrid parallel systems. Much of the impetus for change has been Moore’s Law, but as clock speed increases have stopped and feature size decreases have slowed down, there has been increased demand on parallel processing to continue performance gains. In programming notations and compilers, we observe that the roots of today’s programming notations existed before 1980. And that, through a great deal of research, the most widely used programming notations today, although the result of much broadening of these roots, remain close to target system architectures allowing the programmer to almost explicitly use the target’s parallelism to the best of their ability. The parallel versions of applications directly or indirectly impact nearly everyone, computer expert or not, and parallelism has brought about major breakthroughs in numerous application areas. Seven parallel applications are studied in this book.

Parallel Processing, 1980 to 2020


Parallel Processing, 1980 to 2020

Author: Robert Kuhn

language: en

Publisher: Springer Nature

Release Date: 2022-05-31


DOWNLOAD





This historical survey of parallel processing from 1980 to 2020 is a follow-up to the authors’ 1981 Tutorial on Parallel Processing, which covered the state of the art in hardware, programming languages, and applications. Here, we cover the evolution of the field since 1980 in: parallel computers, ranging from the Cyber 205 to clusters now approaching an exaflop, to multicore microprocessors, and Graphic Processing Units (GPUs) in commodity personal devices; parallel programming notations such as OpenMP, MPI message passing, and CUDA streaming notation; and seven parallel applications, such as finite element analysis and computer vision. Some things that looked like they would be major trends in 1981, such as big Single Instruction Multiple Data arrays disappeared for some time but have been revived recently in deep neural network processors. There are now major trends that did not exist in 1980, such as GPUs, distributed memory machines, and parallel processing in nearly every commodity device. This book is intended for those that already have some knowledge of parallel processing today and want to learn about the history of the three areas. In parallel hardware, every major parallel architecture type from 1980 has scaled-up in performance and scaled-out into commodity microprocessors and GPUs, so that every personal and embedded device is a parallel processor. There has been a confluence of parallel architecture types into hybrid parallel systems. Much of the impetus for change has been Moore’s Law, but as clock speed increases have stopped and feature size decreases have slowed down, there has been increased demand on parallel processing to continue performance gains. In programming notations and compilers, we observe that the roots of today’s programming notations existed before 1980. And that, through a great deal of research, the most widely used programming notations today, although the result of much broadening of these roots, remain close to target system architectures allowing the programmer to almost explicitly use the target’s parallelism to the best of their ability. The parallel versions of applications directly or indirectly impact nearly everyone, computer expert or not, and parallelism has brought about major breakthroughs in numerous application areas. Seven parallel applications are studied in this book.

A Primer on Memory Persistency


A Primer on Memory Persistency

Author: Vaibhav Gogte

language: en

Publisher: Springer Nature

Release Date: 2022-06-01


DOWNLOAD





This book introduces readers to emerging persistent memory (PM) technologies that promise the performance of dynamic random-access memory (DRAM) with the durability of traditional storage media, such as hard disks and solid-state drives (SSDs). Persistent memories (PMs), such as Intel's Optane DC persistent memories, are commercially available today. Unlike traditional storage devices, PMs can be accessed over a byte-addressable load-store interface with access latency that is comparable to DRAM. Unfortunately, existing hardware and software systems are ill-equipped to fully avail the potential of these byte-addressable memory technologies as they have been designed to access traditional storage media over a block-based interface. Several mechanisms have been explored in the research literature over the past decade to design hardware and software systems that provide high-performance access to PMs.Because PMs are durable, they can retain data across failures, such as power failures and program crashes. Upon a failure, recovery mechanisms may inspect PM data, reconstruct state and resume program execution. Correct recovery of data requires that operations to the PM are properly ordered during normal program execution. Memory persistency models define the order in which memory operations are performed at the PM. Much like memory consistency models, memory persistency models may be relaxed to improve application performance. Several proposals have emerged recently to design memory persistency models for hardware and software systems and for high-level programming languages. These proposals differ in several key aspects; they relax PM ordering constraints, introduce varying programmability burden, and introduce differing granularity of failure atomicity for PM operations.This primer provides a detailed overview of the various classes of the memory persistency models, their implementations in hardware, programming languages and software systems proposed in the recent research literature, and the PM ordering techniques employed by modern processors.