Outlier Analysis A Study Of Different Techniques
Download Outlier Analysis A Study Of Different Techniques PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Outlier Analysis A Study Of Different Techniques book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Outlier Analysis. A Study of Different Techniques
Master's Thesis from the year 2022 in the subject Mathematics - Statistics, grade: 9.0, course: IMSc Mathematics and Computing, language: English, abstract: In any application that involve data, outlier detection is critical. In the data mining and statistics literature, outliers are sometimes known as abnormalities, discordants, deviants, or anomalies. The data in most applications are generated by one or more generating processes, which may reflect system activity or observations about entities. This monograph explains what an outlier is and how it can be used in a variety of industries in the first chapter of the report. This chapter also goes over the various types of outliers. Outlier analysis is an important part of research or industry that involves a large amount of data, as described in Chapter 2; it also describes how outliers are related to different data models. Chapter 3 covers Univariate Outlier Detection and methods for completing this task. Multivariate Outlier Detection techniques such as Mahalanobis distance and isolation forest are covered in Chapter 4. Finally, in Chapter 5, the Python programming language has been used to analyse and detect existing outliers in a public dataset. We hope this monograph would be useful to students and practitioners of statistics and other fields involving numerical data analytics.
Outlier Detection: Techniques and Applications
This book, drawing on recent literature, highlights several methodologies for the detection of outliers and explains how to apply them to solve several interesting real-life problems. The detection of objects that deviate from the norm in a data set is an essential task in data mining due to its significance in many contemporary applications. More specifically, the detection of fraud in e-commerce transactions and discovering anomalies in network data have become prominent tasks, given recent developments in the field of information and communication technologies and security. Accordingly, the book sheds light on specific state-of-the-art algorithmic approaches such as the community-based analysis of networks and characterization of temporal outliers present in dynamic networks. It offers a valuable resource for young researchers working in data mining, helping them understand the technical depth of the outlier detection problem and devise innovative solutions to address related challenges.
Outlier Analysis
Author: Charu C. Aggarwal
language: en
Publisher: Springer Science & Business Media
Release Date: 2013-01-11
With the increasing advances in hardware technology for data collection, and advances in software technology (databases) for data organization, computer scientists have increasingly participated in the latest advancements of the outlier analysis field. Computer scientists, specifically, approach this field based on their practical experiences in managing large amounts of data, and with far fewer assumptions– the data can be of any type, structured or unstructured, and may be extremely large. Outlier Analysis is a comprehensive exposition, as understood by data mining experts, statisticians and computer scientists. The book has been organized carefully, and emphasis was placed on simplifying the content, so that students and practitioners can also benefit. Chapters will typically cover one of three areas: methods and techniques commonly used in outlier analysis, such as linear methods, proximity-based methods, subspace methods, and supervised methods; data domains, such as, text, categorical, mixed-attribute, time-series, streaming, discrete sequence, spatial and network data; and key applications of these methods as applied to diverse domains such as credit card fraud detection, intrusion detection, medical diagnosis, earth science, web log analytics, and social network analysis are covered.