Orthogonal Rational Functions

Download Orthogonal Rational Functions PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Orthogonal Rational Functions book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Orthogonal Rational Functions

Author: Adhemar Bultheel
language: en
Publisher: Cambridge University Press
Release Date: 1999-02-13
This book generalises the classical theory of orthogonal polynomials on the complex unit circle, or on the real line to orthogonal rational functions whose poles are among a prescribed set of complex numbers. The first part treats the case where these poles are all outside the unit disk or in the lower half plane. Classical topics such as recurrence relations, numerical quadrature, interpolation properties, Favard theorems, convergence, asymptotics, and moment problems are generalised and treated in detail. The same topics are discussed for the different situation where the poles are located on the unit circle or on the extended real line. In the last chapter, several applications are mentioned including linear prediction, Pisarenko modelling, lossless inverse scattering, and network synthesis. This theory has many applications in theoretical real and complex analysis, approximation theory, numerical analysis, system theory, and in electrical engineering.
Orthogonal Polynomials and Special Functions

Author: Francisco Marcellàn
language: en
Publisher: Springer Science & Business Media
Release Date: 2006-06-19
Special functions and orthogonal polynomials in particular have been around for centuries. Can you imagine mathematics without trigonometric functions, the exponential function or polynomials? In the twentieth century the emphasis was on special functions satisfying linear differential equations, but this has now been extended to difference equations, partial differential equations and non-linear differential equations. The present set of lecture notes containes seven chapters about the current state of orthogonal polynomials and special functions and gives a view on open problems and future directions. The topics are: computational methods and software for quadrature and approximation, equilibrium problems in logarithmic potential theory, discrete orthogonal polynomials and convergence of Krylov subspace methods in numerical linear algebra, orthogonal rational functions and matrix orthogonal rational functions, orthogonal polynomials in several variables (Jack polynomials) and separation of variables, a classification of finite families of orthogonal polynomials in Askey’s scheme using Leonard pairs, and non-linear special functions associated with the Painlevé equations.
Orthogonal Functions

"Oulines an array of recent work on the analytic theory and potential applications of continued fractions, linear functionals, orthogonal functions, moment theory, and integral transforms. Describes links between continued fractions. Pade approximation, special functions, and Gaussian quadrature."