Orthogonal Polynomials On The Unit Circle Spectral Theory

Download Orthogonal Polynomials On The Unit Circle Spectral Theory PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Orthogonal Polynomials On The Unit Circle Spectral Theory book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Orthogonal Polynomials on the Unit Circle

This two-part volume gives a comprehensive overview of the theory of probability measures on the unit circle, viewed especially in terms of the orthogonal polynomials defined by those measures. A major theme involves the connections between the Verblunsky coefficients (the coefficients of the recurrence equation for the orthogonal polynomials) and the measures, an analog of the spectral theory of one-dimensional Schrödinger operators. Among the topics discussed along the way are the asymptotics of Toeplitz determinants (Szegő's theorems), limit theorems for the density of the zeros of orthogonal polynomials, matrix representations for multiplication by (CMV matrices), periodic Verblunsky coefficients from the point of view of meromorphic functions on hyperelliptic surfaces, and connections between the theories of orthogonal polynomials on the unit circle and on the real line. The book is suitable for graduate students and researchers interested in analysis.
Orthogonal Polynomials on the Unit Circle: Spectral theory

This two-part book is a comprehensive overview of the theory of probability measures on the unit circle, viewed especially in terms of the orthogonal polynomials defined by those measures. A major theme involves the connections between the Verblunsky coefficients (the coefficients of the recurrence equation for the orthogonal polynomials) and the measures, an analog of the spectral theory of one-dimensional Schrödinger operators. Among the topics discussed along the way are the asymptotics of Toeplitz determinants (Szegö's theorems), limit theorems for the density of the zeros of orthogonal polynomials, matrix representations for multiplication by z (CMV matrices), periodic Verblunsky coefficients from the point of view of meromorphic functions on hyperelliptic surfaces, and connections between the theories of orthogonal polynomials on the unit circle and on the real line.
Orthogonal Polynomials on the Unit Circle: Spectral theory

Presents an overview of the theory of probability measures on the unit circle, viewed especially in terms of the orthogonal polynomials defined by those measures. This book discusses topics such as asymptotics of Toeplitz determinants (Szego's theorems), and limit theorems for the density of the zeros of orthogonal polynomials.