Orthogonal And Symplectic N Level Densities

Download Orthogonal And Symplectic N Level Densities PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Orthogonal And Symplectic N Level Densities book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Orthogonal and Symplectic $n$-level Densities

Author: A. M. Mason
language: en
Publisher: American Mathematical Soc.
Release Date: 2018-02-23
In this paper the authors apply to the zeros of families of -functions with orthogonal or symplectic symmetry the method that Conrey and Snaith (Correlations of eigenvalues and Riemann zeros, 2008) used to calculate the -correlation of the zeros of the Riemann zeta function. This method uses the Ratios Conjectures (Conrey, Farmer, and Zimbauer, 2008) for averages of ratios of zeta or -functions. Katz and Sarnak (Zeroes of zeta functions and symmetry, 1999) conjecture that the zero statistics of families of -functions have an underlying symmetry relating to one of the classical compact groups , and . Here the authors complete the work already done with (Conrey and Snaith, Correlations of eigenvalues and Riemann zeros, 2008) to show how new methods for calculating the -level densities of eigenangles of random orthogonal or symplectic matrices can be used to create explicit conjectures for the -level densities of zeros of -functions with orthogonal or symplectic symmetry, including all the lower order terms. They show how the method used here results in formulae that are easily modified when the test function used has a restricted range of support, and this will facilitate comparison with rigorous number theoretic -level density results.
Skew-orthogonal Polynomials and Random Matrix Theory

"Orthogonal polynomials satisfy a three-term recursion relation irrespective of the weight function with respect to which they are defined. This gives a simple formula for the kernel function, known in the literature as the Christoffel-Darboux sum. The availability of asymptotic results of orthogonal polynomials and the simple structure of the Christoffel-Darboux sum make the study of unitary ensembles of random matrices relatively straightforward. In this book, the author develops the theory of skew-orthogonal polynomials and obtains recursion relations which, unlike orthogonal polynomials, depend on weight functions. After deriving reduced expressions, called the generalized Christoffel-Darboux formulas (GCD), he obtains universal correlation functions and non-universal level densities for a wide class of random matrix ensembles using the GCD. The author also shows that once questions about higher order effects are considered (questions that are relevant in different branches of physics and mathematics) the use of the GCD promises to be efficient. Titles in this series are co-published with the Centre de Recherches Mathématiques."--Publisher's website.
On the Geometric Side of the Arthur Trace Formula for the Symplectic Group of Rank 2

Author: Werner Hoffmann
language: en
Publisher: American Mathematical Soc.
Release Date: 2018-10-03
The authors study the non-semisimple terms in the geometric side of the Arthur trace formula for the split symplectic similitude group and the split symplectic group of rank over any algebraic number field. In particular, they express the global coefficients of unipotent orbital integrals in terms of Dedekind zeta functions, Hecke -functions, and the Shintani zeta function for the space of binary quadratic forms.