Oriented Projective Geometry


Download Oriented Projective Geometry PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Oriented Projective Geometry book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Oriented Projective Geometry


Oriented Projective Geometry

Author: Jorge Stolfi

language: en

Publisher: Academic Press

Release Date: 2014-05-10


DOWNLOAD





Oriented Projective Geometry: A Framework for Geometric Computations proposes that oriented projective geometry is a better framework for geometric computations than classical projective geometry. The aim of the book is to stress the value of oriented projective geometry for practical computing and develop it as a rich, consistent, and effective tool for computer programmers. The monograph is comprised of 20 chapters. Chapter 1 gives a quick overview of classical and oriented projective geometry on the plane, and discusses their advantages and disadvantages as computational models. Chapters 2 through 7 define the canonical oriented projective spaces of arbitrary dimension, the operations of join and meet, and the concept of relative orientation. Chapter 8 defines projective maps, the space transformations that preserve incidence and orientation; these maps are used in chapter 9 to define abstract oriented projective spaces. Chapter 10 introduces the notion of projective duality. Chapters 11, 12, and 13 deal with projective functions, projective frames, relative coordinates, and cross-ratio. Chapter 14 tells about convexity in oriented projective spaces. Chapters 15, 16, and 17 show how the affine, Euclidean, and linear vector spaces can be emulated with the oriented projective space. Finally, chapters 18 through 20 discuss the computer representation and manipulation of lines, planes, and other subspaces. Computer scientists and programmers will find this text invaluable.

Introduction to Geometric Computing


Introduction to Geometric Computing

Author: Sherif Ghali

language: en

Publisher: Springer Science & Business Media

Release Date: 2008-07-05


DOWNLOAD





Computing is quickly making much of geometry intriguing not only for philosophers and mathematicians, but also for scientists and engineers. What is the core set of topics that a practitioner needs to study before embarking on the design and implementation of a geometric system in a specialized discipline? This book attempts to find the answer. Every programmer tackling a geometric computing problem encounters design decisions that need to be solved. This book reviews the geometric theory then applies it in an attempt to find that elusive "right" design.

Photogrammetric Computer Vision


Photogrammetric Computer Vision

Author: Wolfgang Förstner

language: en

Publisher: Springer

Release Date: 2016-10-04


DOWNLOAD





This textbook offers a statistical view on the geometry of multiple view analysis, required for camera calibration and orientation and for geometric scene reconstruction based on geometric image features. The authors have backgrounds in geodesy and also long experience with development and research in computer vision, and this is the first book to present a joint approach from the converging fields of photogrammetry and computer vision. Part I of the book provides an introduction to estimation theory, covering aspects such as Bayesian estimation, variance components, and sequential estimation, with a focus on the statistically sound diagnostics of estimation results essential in vision metrology. Part II provides tools for 2D and 3D geometric reasoning using projective geometry. This includes oriented projective geometry and tools for statistically optimal estimation and test of geometric entities and transformations and their relations, tools that are useful also in the context of uncertain reasoning in point clouds. Part III is devoted to modelling the geometry of single and multiple cameras, addressing calibration and orientation, including statistical evaluation and reconstruction of corresponding scene features and surfaces based on geometric image features. The authors provide algorithms for various geometric computation problems in vision metrology, together with mathematical justifications and statistical analysis, thus enabling thorough evaluations. The chapters are self-contained with numerous figures and exercises, and they are supported by an appendix that explains the basic mathematical notation and a detailed index. The book can serve as the basis for undergraduate and graduate courses in photogrammetry, computer vision, and computer graphics. It is also appropriate for researchers, engineers, and software developers in the photogrammetry and GIS industries, particularly those engaged with statistically based geometric computer vision methods.