Ordered Regression Models

Download Ordered Regression Models PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Ordered Regression Models book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Logistic Regression Models for Ordinal Response Variables

Author: Ann A. O′Connell
language: en
Publisher: SAGE Publications
Release Date: 2005-11-02
Logistic Regression Models for Ordinal Response Variables provides applied researchers in the social, educational, and behavioral sciences with an accessible and comprehensive coverage of analyses for ordinal outcomes. The content builds on a review of logistic regression, and extends to details of the cumulative (proportional) odds, continuation ratio, and adjacent category models for ordinal data. Description and examples of partial proportional odds models are also provided. This book is highly readable, with lots of examples and in-depth explanations and interpretations of model characteristics. SPSS and SAS are used for all examples; data and syntax are available from the author′s website. The examples are drawn from an educational context, but applications to other fields of inquiry are noted, such as HIV prevention, behavior change, counseling psychology, social psychology, etc.). The level of the book is set for applied researchers who need to quickly understand the use and application of these kinds of ordinal regression models.
Ordered Regression Models

Ordered Regression Models: Parallel, Partial, and Non-Parallel Alternatives presents regression models for ordinal outcomes, which are variables that have ordered categories but unknown spacing between the categories. The book provides comprehensive coverage of the three major classes of ordered regression models (cumulative, stage, and adjacent) as well as variations based on the application of the parallel regression assumption. The authors first introduce the three "parallel" ordered regression models before covering unconstrained partial, constrained partial, and nonparallel models. They then review existing tests for the parallel regression assumption, propose new variations of several tests, and discuss important practical concerns related to tests of the parallel regression assumption. The book also describes extensions of ordered regression models, including heterogeneous choice models, multilevel ordered models, and the Bayesian approach to ordered regression models. Some chapters include brief examples using Stata and R. This book offers a conceptual framework for understanding ordered regression models based on the probability of interest and the application of the parallel regression assumption. It demonstrates the usefulness of numerous modeling alternatives, showing you how to select the most appropriate model given the type of ordinal outcome and restrictiveness of the parallel assumption for each variable. Web Resource More detailed examples are available on a supplementary website. The site also contains JAGS, R, and Stata codes to estimate the models along with syntax to reproduce the results.
Modeling Ordered Choices

Author: William H. Greene
language: en
Publisher: Cambridge University Press
Release Date: 2010-04-08
It is increasingly common for analysts to seek out the opinions of individuals and organizations using attitudinal scales such as degree of satisfaction or importance attached to an issue. Examples include levels of obesity, seriousness of a health condition, attitudes towards service levels, opinions on products, voting intentions, and the degree of clarity of contracts. Ordered choice models provide a relevant methodology for capturing the sources of influence that explain the choice made amongst a set of ordered alternatives. The methods have evolved to a level of sophistication that can allow for heterogeneity in the threshold parameters, in the explanatory variables (through random parameters), and in the decomposition of the residual variance. This book brings together contributions in ordered choice modeling from a number of disciplines, synthesizing developments over the last fifty years, and suggests useful extensions to account for the wide range of sources of influence on choice.