Optimization Of Polynomials In Non Commuting Variables


Download Optimization Of Polynomials In Non Commuting Variables PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Optimization Of Polynomials In Non Commuting Variables book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Optimization of Polynomials in Non-Commuting Variables


Optimization of Polynomials in Non-Commuting Variables

Author: Sabine Burgdorf

language: en

Publisher: Springer

Release Date: 2016-06-07


DOWNLOAD





This book presents recent results on positivity and optimization of polynomials in non-commuting variables. Researchers in non-commutative algebraic geometry, control theory, system engineering, optimization, quantum physics and information science will find the unified notation and mixture of algebraic geometry and mathematical programming useful. Theoretical results are matched with algorithmic considerations; several examples and information on how to use NCSOStools open source package to obtain the results provided. Results are presented on detecting the eigenvalue and trace positivity of polynomials in non-commuting variables using Newton chip method and Newton cyclic chip method, relaxations for constrained and unconstrained optimization problems, semidefinite programming formulations of the relaxations and finite convergence of the hierarchies of these relaxations, and the practical efficiency of algorithms.

Sparse Polynomial Optimization: Theory And Practice


Sparse Polynomial Optimization: Theory And Practice

Author: Victor Magron

language: en

Publisher: World Scientific

Release Date: 2023-04-25


DOWNLOAD





Many applications, including computer vision, computer arithmetic, deep learning, entanglement in quantum information, graph theory and energy networks, can be successfully tackled within the framework of polynomial optimization, an emerging field with growing research efforts in the last two decades. One key advantage of these techniques is their ability to model a wide range of problems using optimization formulations. Polynomial optimization heavily relies on the moment-sums of squares (moment-SOS) approach proposed by Lasserre, which provides certificates for positive polynomials. On the practical side, however, there is 'no free lunch' and such optimization methods usually encompass severe scalability issues. Fortunately, for many applications, including the ones formerly mentioned, we can look at the problem in the eyes and exploit the inherent data structure arising from the cost and constraints describing the problem.This book presents several research efforts to resolve this scientific challenge with important computational implications. It provides the development of alternative optimization schemes that scale well in terms of computational complexity, at least in some identified class of problems. It also features a unified modeling framework to handle a wide range of applications involving both commutative and noncommutative variables, and to solve concretely large-scale instances. Readers will find a practical section dedicated to the use of available open-source software libraries.This interdisciplinary monograph is essential reading for students, researchers and professionals interested in solving optimization problems with polynomial input data.

Handbook on Semidefinite, Conic and Polynomial Optimization


Handbook on Semidefinite, Conic and Polynomial Optimization

Author: Miguel F. Anjos

language: en

Publisher: Springer Science & Business Media

Release Date: 2011-11-19


DOWNLOAD





Semidefinite and conic optimization is a major and thriving research area within the optimization community. Although semidefinite optimization has been studied (under different names) since at least the 1940s, its importance grew immensely during the 1990s after polynomial-time interior-point methods for linear optimization were extended to solve semidefinite optimization problems. Since the beginning of the 21st century, not only has research into semidefinite and conic optimization continued unabated, but also a fruitful interaction has developed with algebraic geometry through the close connections between semidefinite matrices and polynomial optimization. This has brought about important new results and led to an even higher level of research activity. This Handbook on Semidefinite, Conic and Polynomial Optimization provides the reader with a snapshot of the state-of-the-art in the growing and mutually enriching areas of semidefinite optimization, conic optimization, and polynomial optimization. It contains a compendium of the recent research activity that has taken place in these thrilling areas, and will appeal to doctoral students, young graduates, and experienced researchers alike. The Handbook’s thirty-one chapters are organized into four parts: Theory, covering significant theoretical developments as well as the interactions between conic optimization and polynomial optimization; Algorithms, documenting the directions of current algorithmic development; Software, providing an overview of the state-of-the-art; Applications, dealing with the application areas where semidefinite and conic optimization has made a significant impact in recent years.