Optimization Models For Resource Allocation Under Perturbation


Download Optimization Models For Resource Allocation Under Perturbation PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Optimization Models For Resource Allocation Under Perturbation book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Optimization Models for Resource Allocation Under Perturbation


Optimization Models for Resource Allocation Under Perturbation

Author: Dongxue Bridgeman

language: en

Publisher:

Release Date: 2013


DOWNLOAD





Optimization Models for Resource allocation are investing in how to make the best use of available but limited resources in order to achieve the best results. In strategic planning, resource allocation is a plan for using available resources, especially in the near future, to achieve the goals of the future. It is a process of allocating resources during the entire planning horizon and among the various units. Resource allocation plans can be decided by using mathematical programming. In this dissertation, the research has been focused on how to allocate resources in the uncertain environment. The mathematical programming formulations for the resource allocation model under severe uncertainty will be studied. In particular, we will focus on solving the stability issues of the traditional probabilistic model. We propose an approach consisting of solving a sequence of convex robust optimization models with unknown-but-bounded random variables along with the stochastic programming to pursue the allocation performance for the expected overall objective value. Our theoretical results show that the proposed approach can always obtain an equivalent or a better expected revenue with the corresponding allocation, while significantly reducing the risk under perturbations. Although this method requires solving two convex mathematical programming models, both models are solved within a timely manner thanks to their convex model instances and with effective, and less, computationally demanding algorithms. With the increasing threats from public health emergencies, such as earthquakes, tornados, pandemic flus, or terrorist attacks, high attention has been paid to the public health response to a pandemic from federal to national level, together with local health departments, and the health-care community. Various organizations cooperate with each other to strengthen the preparedness for the pandemic and disastrous emergencies, thus to improve the public health. The Strategic National Stockpile (SNS) is maintained by the Centers for Disease Control and Prevention (CDC) and the U.S. Department of Health and Human Services (DHHS) for the United States in the event of a shortage of local medical resources or other unanticipated supply problems. The SNS is the United States' national repository of antibiotics, vaccines, chemical antidotes, antitoxins, and other critical medical equipment and supplies. It has the capability to supplement or re-supply local health authorities with necessary materials for relief action within the response time in as little as 12 hours. The pilot study is done with the support of Kentucky SNS to determine the capacity allocation plan for each county in order to maximize the health benefit under various uncertainties, which can never be accurately estimated. We thereby employ a heuristic method named "resource reservation" to suggest the resource allocation plan for Kentucky SNS.

Resource Allocation and Performance Optimization in Communication Networks and the Internet


Resource Allocation and Performance Optimization in Communication Networks and the Internet

Author: Liansheng Tan

language: en

Publisher: CRC Press

Release Date: 2017-08-15


DOWNLOAD





This book provides a comprehensive introduction to the underlying theory, design techniques and analytical results of wireless communication networks, focusing on the core principles of wireless network design. It elaborates the network utility maximization (NUM) theory with applications in resource allocation of wireless networks, with a central aim of design and the QoS guarantee. It presents and discusses state-of-the-art developments in resource allocation and performance optimization in wireless communication networks. It provides an overview of the general background including the basic wireless communication networks and the relevant protocols, architectures, methods and algorithms.

Optimization in Economics and Finance


Optimization in Economics and Finance

Author: Bruce D. Craven

language: en

Publisher: Springer Science & Business Media

Release Date: 2005-10-24


DOWNLOAD





Many optimization questions arise in economics and finance; an important example of this is the society's choice of the optimum state of the economy (the social choice problem). Optimization in Economics and Finance extends and improves the usual optimization techniques, in a form that may be adopted for modeling social choice problems. Problems discussed include: when is an optimum reached; when is it unique; relaxation of the conventional convex (or concave) assumptions on an economic model; associated mathematical concepts such as invex and quasimax; multiobjective optimal control models; and related computational methods and programs. These techniques are applied to economic growth models (including small stochastic perturbations), finance and financial investment models (and the interaction between financial and production variables), modeling sustainability over long time horizons, boundary (transversality) conditions, and models with several conflicting objectives. Although the applications are general and illustrative, the models in this book provide examples of possible models for a society's social choice for an allocation that maximizes welfare and utilization of resources. As well as using existing computer programs for optimization of models, a new computer program, named SCOM, is presented in this book for computing social choice models by optimal control.