Optimization In Function Spaces


Download Optimization In Function Spaces PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Optimization In Function Spaces book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Optimization in Function Spaces


Optimization in Function Spaces

Author: Amol Sasane

language: en

Publisher: Courier Dover Publications

Release Date: 2016-04-10


DOWNLOAD





This highly readable volume on optimization in function spaces is based on author Amol Sasane's lecture notes, which he developed over several years while teaching a course for third-year undergraduates at the London School of Economics. The classroom-tested text is written in an informal but precise style that emphasizes clarity and detail, taking students step by step through each subject. Numerous examples throughout the text clarify methods, and a substantial number of exercises provide reinforcement. Detailed solutions to all of the exercises make this book ideal for self-study. The topics are relevant to students in engineering and economics as well as mathematics majors. Prerequisites include multivariable calculus and basic linear algebra. The necessary background in differential equations and elementary functional analysis is developed within the text, offering students a self-contained treatment.

Semismooth Newton Methods for Variational Inequalities and Constrained Optimization Problems in Function Spaces


Semismooth Newton Methods for Variational Inequalities and Constrained Optimization Problems in Function Spaces

Author: Michael Ulbrich

language: en

Publisher: SIAM

Release Date: 2011-01-01


DOWNLOAD





Semismooth Newton methods are a modern class of remarkably powerful and versatile algorithms for solving constrained optimization problems with partial differential equations (PDEs), variational inequalities, and related problems. This book provides a comprehensive presentation of these methods in function spaces, striking a balance between thoroughly developed theory and numerical applications. Although largely self-contained, the book also covers recent developments in the field, such as state-constrained problems, and offers new material on topics such as improved mesh independence results. The theory and methods are applied to a range of practically important problems, including: optimal control of nonlinear elliptic differential equations, obstacle problems, and flow control of instationary Navier-Stokes fluids. In addition, the author covers adjoint-based derivative computation and the efficient solution of Newton systems by multigrid and preconditioned iterative methods.

Optimization in Function Spaces


Optimization in Function Spaces

Author: Peter Kosmol

language: en

Publisher: Walter de Gruyter

Release Date: 2011-02-28


DOWNLOAD





This is an essentially self-contained book on the theory of convex functions and convex optimization in Banach spaces, with a special interest in Orlicz spaces. Approximate algorithms based on the stability principles and the solution of the corresponding nonlinear equations are developed in this text. A synopsis of the geometry of Banach spaces, aspects of stability and the duality of different levels of differentiability and convexity is developed. A particular emphasis is placed on the geometrical aspects of strong solvability of a convex optimization problem: it turns out that this property is equivalent to local uniform convexity of the corresponding convex function. This treatise also provides a novel approach to the fundamental theorems of Variational Calculus based on the principle of pointwise minimization of the Lagrangian on the one hand and convexification by quadratic supplements using the classical Legendre-Ricatti equation on the other. The reader should be familiar with the concepts of mathematical analysis and linear algebra. Some awareness of the principles of measure theory will turn out to be helpful. The book is suitable for students of the second half of undergraduate studies, and it provides a rich set of material for a master course on linear and nonlinear functional analysis. Additionally it offers novel aspects at the advanced level. From the contents: Approximation and Polya Algorithms in Orlicz Spaces Convex Sets and Convex Functions Numerical Treatment of Non-linear Equations and Optimization Problems Stability and Two-stage Optimization Problems Orlicz Spaces, Orlicz Norm and Duality Differentiability and Convexity in Orlicz Spaces Variational Calculus