Optimization For Learning And Control


Download Optimization For Learning And Control PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Optimization For Learning And Control book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Optimization for Learning and Control


Optimization for Learning and Control

Author: Anders Hansson

language: en

Publisher: John Wiley & Sons

Release Date: 2023-06-07


DOWNLOAD





Optimization for Learning and Control Comprehensive resource providing a masters’ level introduction to optimization theory and algorithms for learning and control Optimization for Learning and Control describes how optimization is used in these domains, giving a thorough introduction to both unsupervised learning, supervised learning, and reinforcement learning, with an emphasis on optimization methods for large-scale learning and control problems. Several applications areas are also discussed, including signal processing, system identification, optimal control, and machine learning. Today, most of the material on the optimization aspects of deep learning that is accessible for students at a Masters’ level is focused on surface-level computer programming; deeper knowledge about the optimization methods and the trade-offs that are behind these methods is not provided. The objective of this book is to make this scattered knowledge, currently mainly available in publications in academic journals, accessible for Masters’ students in a coherent way. The focus is on basic algorithmic principles and trade-offs. Optimization for Learning and Control covers sample topics such as: Optimization theory and optimization methods, covering classes of optimization problems like least squares problems, quadratic problems, conic optimization problems and rank optimization. First-order methods, second-order methods, variable metric methods, and methods for nonlinear least squares problems. Stochastic optimization methods, augmented Lagrangian methods, interior-point methods, and conic optimization methods. Dynamic programming for solving optimal control problems and its generalization to reinforcement learning. How optimization theory is used to develop theory and tools of statistics and learning, e.g., the maximum likelihood method, expectation maximization, k-means clustering, and support vector machines. How calculus of variations is used in optimal control and for deriving the family of exponential distributions. Optimization for Learning and Control is an ideal resource on the subject for scientists and engineers learning about which optimization methods are useful for learning and control problems; the text will also appeal to industry professionals using machine learning for different practical applications.

Reinforcement Learning and Stochastic Optimization


Reinforcement Learning and Stochastic Optimization

Author: Warren B. Powell

language: en

Publisher: John Wiley & Sons

Release Date: 2022-03-15


DOWNLOAD





REINFORCEMENT LEARNING AND STOCHASTIC OPTIMIZATION Clearing the jungle of stochastic optimization Sequential decision problems, which consist of “decision, information, decision, information,” are ubiquitous, spanning virtually every human activity ranging from business applications, health (personal and public health, and medical decision making), energy, the sciences, all fields of engineering, finance, and e-commerce. The diversity of applications attracted the attention of at least 15 distinct fields of research, using eight distinct notational systems which produced a vast array of analytical tools. A byproduct is that powerful tools developed in one community may be unknown to other communities. Reinforcement Learning and Stochastic Optimization offers a single canonical framework that can model any sequential decision problem using five core components: state variables, decision variables, exogenous information variables, transition function, and objective function. This book highlights twelve types of uncertainty that might enter any model and pulls together the diverse set of methods for making decisions, known as policies, into four fundamental classes that span every method suggested in the academic literature or used in practice. Reinforcement Learning and Stochastic Optimization is the first book to provide a balanced treatment of the different methods for modeling and solving sequential decision problems, following the style used by most books on machine learning, optimization, and simulation. The presentation is designed for readers with a course in probability and statistics, and an interest in modeling and applications. Linear programming is occasionally used for specific problem classes. The book is designed for readers who are new to the field, as well as those with some background in optimization under uncertainty. Throughout this book, readers will find references to over 100 different applications, spanning pure learning problems, dynamic resource allocation problems, general state-dependent problems, and hybrid learning/resource allocation problems such as those that arose in the COVID pandemic. There are 370 exercises, organized into seven groups, ranging from review questions, modeling, computation, problem solving, theory, programming exercises and a "diary problem" that a reader chooses at the beginning of the book, and which is used as a basis for questions throughout the rest of the book.

Simulation-Based Optimization


Simulation-Based Optimization

Author: Abhijit Gosavi

language: en

Publisher: Springer Science & Business Media

Release Date: 2003-06-30


DOWNLOAD





Simulation-Based Optimization: Parametric Optimization Techniques and Reinforcement Learning introduces the evolving area of simulation-based optimization. The book's objective is two-fold: (1) It examines the mathematical governing principles of simulation-based optimization, thereby providing the reader with the ability to model relevant real-life problems using these techniques. (2) It outlines the computational technology underlying these methods. Taken together these two aspects demonstrate that the mathematical and computational methods discussed in this book do work. Broadly speaking, the book has two parts: (1) parametric (static) optimization and (2) control (dynamic) optimization. Some of the book's special features are: *An accessible introduction to reinforcement learning and parametric-optimization techniques. *A step-by-step description of several algorithms of simulation-based optimization. *A clear and simple introduction to the methodology of neural networks. *A gentle introduction to convergence analysis of some of the methods enumerated above. *Computer programs for many algorithms of simulation-based optimization.