Optimization And Learning Via Stochastic Gradient Search


Download Optimization And Learning Via Stochastic Gradient Search PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Optimization And Learning Via Stochastic Gradient Search book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Optimization and Learning Via Stochastic Gradient Search


Optimization and Learning Via Stochastic Gradient Search

Author: Felisa Vázquez-Abad

language: en

Publisher: Princeton University Press

Release Date: 2025-10-28


DOWNLOAD





An introduction to gradient-based stochastic optimization that integrates theory and implementation This book explains gradient-based stochastic optimization, exploiting the methodologies of stochastic approximation and gradient estimation. Although the approach is theoretical, the book emphasizes developing algorithms that implement the methods. The underlying philosophy of this book is that when solving real problems, mathematical theory, the art of modeling, and numerical algorithms complement each other, with no one outlook dominating the others. The book first covers the theory of stochastic approximation including advanced models and state-of-the-art analysis methodology, treating applications that do not require the use of gradient estimation. It then presents gradient estimation, developing a modern approach that incorporates cutting-edge numerical algorithms. Finally, the book culminates in a rich set of case studies that integrate the concepts previously discussed into fully worked models. The use of stochastic approximation in statistics and machine learning is discussed, and in-depth theoretical treatments for selected gradient estimation approaches are included. Numerous examples show how the methods are applied concretely, and end-of-chapter exercises enable readers to consolidate their knowledge. Many chapters end with a section on “Practical Considerations” that addresses typical tradeoffs encountered in implementation. The book provides the first unified treatment of the topic, written for a wide audience that includes researchers and graduate students in applied mathematics, engineering, computer science, physics, and economics.

Neural Networks: Tricks of the Trade


Neural Networks: Tricks of the Trade

Author: Grégoire Montavon

language: en

Publisher: Springer

Release Date: 2012-11-14


DOWNLOAD





The twenty last years have been marked by an increase in available data and computing power. In parallel to this trend, the focus of neural network research and the practice of training neural networks has undergone a number of important changes, for example, use of deep learning machines. The second edition of the book augments the first edition with more tricks, which have resulted from 14 years of theory and experimentation by some of the world's most prominent neural network researchers. These tricks can make a substantial difference (in terms of speed, ease of implementation, and accuracy) when it comes to putting algorithms to work on real problems.

Reinforcement Learning and Stochastic Optimization


Reinforcement Learning and Stochastic Optimization

Author: Warren B. Powell

language: en

Publisher: John Wiley & Sons

Release Date: 2022-03-15


DOWNLOAD





REINFORCEMENT LEARNING AND STOCHASTIC OPTIMIZATION Clearing the jungle of stochastic optimization Sequential decision problems, which consist of “decision, information, decision, information,” are ubiquitous, spanning virtually every human activity ranging from business applications, health (personal and public health, and medical decision making), energy, the sciences, all fields of engineering, finance, and e-commerce. The diversity of applications attracted the attention of at least 15 distinct fields of research, using eight distinct notational systems which produced a vast array of analytical tools. A byproduct is that powerful tools developed in one community may be unknown to other communities. Reinforcement Learning and Stochastic Optimization offers a single canonical framework that can model any sequential decision problem using five core components: state variables, decision variables, exogenous information variables, transition function, and objective function. This book highlights twelve types of uncertainty that might enter any model and pulls together the diverse set of methods for making decisions, known as policies, into four fundamental classes that span every method suggested in the academic literature or used in practice. Reinforcement Learning and Stochastic Optimization is the first book to provide a balanced treatment of the different methods for modeling and solving sequential decision problems, following the style used by most books on machine learning, optimization, and simulation. The presentation is designed for readers with a course in probability and statistics, and an interest in modeling and applications. Linear programming is occasionally used for specific problem classes. The book is designed for readers who are new to the field, as well as those with some background in optimization under uncertainty. Throughout this book, readers will find references to over 100 different applications, spanning pure learning problems, dynamic resource allocation problems, general state-dependent problems, and hybrid learning/resource allocation problems such as those that arose in the COVID pandemic. There are 370 exercises, organized into seven groups, ranging from review questions, modeling, computation, problem solving, theory, programming exercises and a "diary problem" that a reader chooses at the beginning of the book, and which is used as a basis for questions throughout the rest of the book.