Optimisation In Signal And Image Processing

Download Optimisation In Signal And Image Processing PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Optimisation In Signal And Image Processing book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Optimisation in Signal and Image Processing

This book describes the optimization methods most commonly encountered in signal and image processing: artificial evolution and Parisian approach; wavelets and fractals; information criteria; training and quadratic programming; Bayesian formalism; probabilistic modeling; Markovian approach; hidden Markov models; and metaheuristics (genetic algorithms, ant colony algorithms, cross-entropy, particle swarm optimization, estimation of distribution algorithms, and artificial immune systems).
Nature Inspired Optimization Techniques for Image Processing Applications

This book provides a platform for exploring nature-inspired optimization techniques in the context of imaging applications. Optimization has become part and parcel of all computational vision applications, and since the amount of data used in these applications is vast, the need for optimization techniques has increased exponentially. These accuracy and complexity are a major area of concern when it comes to practical applications. However, these optimization techniques have not yet been fully explored in the context of imaging applications. By presenting interdisciplinary concepts, ranging from optimization to image processing, the book appeals to a broad readership, while also encouraging budding engineers to pursue and employ innovative nature-inspired techniques for image processing applications.
Convex Optimization for Signal Processing and Communications

Convex Optimization for Signal Processing and Communications: From Fundamentals to Applications provides fundamental background knowledge of convex optimization, while striking a balance between mathematical theory and applications in signal processing and communications. In addition to comprehensive proofs and perspective interpretations for core convex optimization theory, this book also provides many insightful figures, remarks, illustrative examples, and guided journeys from theory to cutting-edge research explorations, for efficient and in-depth learning, especially for engineering students and professionals. With the powerful convex optimization theory and tools, this book provides you with a new degree of freedom and the capability of solving challenging real-world scientific and engineering problems.