Optimal Quantification And Symmetry

Download Optimal Quantification And Symmetry PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Optimal Quantification And Symmetry book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Optimal Quantification and Symmetry

Author: Shizuhiko Nishisato
language: en
Publisher: Springer Nature
Release Date: 2022-02-21
This book offers a unique new look at the familiar quantification theory from the point of view of mathematical symmetry and spatial symmetry. Symmetry exists in many aspects of our life—for instance, in the arts and biology as an ingredient of beauty and equilibrium, and more importantly, for data analysis as an indispensable representation of functional optimality. This unique focus on symmetry clarifies the objectives of quantification theory and the demarcation of quantification space, something that has never caught the attention of researchers. Mathematical symmetry is well known, as can be inferred from Hirschfeld’s simultaneous linear regressions, but spatial symmetry has not been discussed before, except for what one may infer from Nishisato’s dual scaling. The focus on symmetry here clarifies the demarcation of quantification analysis and makes it easier to understand such a perennial problem as that of joint graphical display in quantification theory. The new framework will help advance the frontier of further developments of quantification theory. Many numerical examples are included to clarify the details of quantification theory, with a focus on symmetry as its operational principle. In this way, the book is useful not only for graduate students but also for researchers in diverse areas of data analysis.
Optimal Analysis of Structures by Concepts of Symmetry and Regularity

Author: Ali Kaveh
language: en
Publisher: Springer Science & Business Media
Release Date: 2013-05-16
Optimal analysis is defined as an analysis that creates and uses sparse, well-structured and well-conditioned matrices. The focus is on efficient methods for eigensolution of matrices involved in static, dynamic and stability analyses of symmetric and regular structures, or those general structures containing such components. Powerful tools are also developed for configuration processing, which is an important issue in the analysis and design of space structures and finite element models. Different mathematical concepts are combined to make the optimal analysis of structures feasible. Canonical forms from matrix algebra, product graphs from graph theory and symmetry groups from group theory are some of the concepts involved in the variety of efficient methods and algorithms presented. The algorithms elucidated in this book enable analysts to handle large-scale structural systems by lowering their computational cost, thus fulfilling the requirement for faster analysis and design of future complex systems. The value of the presented methods becomes all the more evident in cases where the analysis needs to be repeated hundreds or even thousands of times, as for the optimal design of structures by different metaheuristic algorithms. The book is of interest to anyone engaged in computer-aided analysis and design and software developers in this field. Though the methods are demonstrated mainly through skeletal structures, continuum models have also been added to show the generality of the methods. The concepts presented are not only applicable to different types of structures but can also be used for the analysis of other systems such as hydraulic and electrical networks.
Measurement, Mathematics and New Quantification Theory

Author: Shizuhiko Nishisato
language: en
Publisher: Springer Nature
Release Date: 2023-06-12
The purpose of this book is to thoroughly prepare diverse areas of researchers in quantification theory. As is well known, quantification theory has attracted the attention of a countless number of researchers, some mathematically oriented and others not, but all of them are experts in their own disciplines. Quantifying non-quantitative (qualitative) data requires a variety of mathematical and statistical strategies, some of which are quite complicated. Unlike many books on quantification theory, the current book places more emphasis on preliminary requisites of mathematical tools than on details of quantification theory. As such, the book is primarily intended for readers whose specialty is outside mathematical sciences. The book was designed to offer non-mathematicians a variety of mathematical tools used in quantification theory in simple terms. Once all the preliminaries are fully discussed, quantification theory is then introduced in the last section as a simple application of those mathematical procedures fully discussed so far. The book opens up further frontiers of quantification theory as simple applications of basic mathematics.