Optimal Experimental Design With R


Download Optimal Experimental Design With R PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Optimal Experimental Design With R book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Optimal Experimental Design with R


Optimal Experimental Design with R

Author: Dieter Rasch

language: en

Publisher: CRC Press

Release Date: 2011-05-18


DOWNLOAD





Experimental design is often overlooked in the literature of applied and mathematical statistics: statistics is taught and understood as merely a collection of methods for analyzing data. Consequently, experimenters seldom think about optimal design, including prerequisites such as the necessary sample size needed for a precise answer for an experi

Optimal Design of Experiments


Optimal Design of Experiments

Author: Peter Goos

language: en

Publisher: John Wiley & Sons

Release Date: 2011-06-28


DOWNLOAD





"This is an engaging and informative book on the modern practice of experimental design. The authors' writing style is entertaining, the consulting dialogs are extremely enjoyable, and the technical material is presented brilliantly but not overwhelmingly. The book is a joy to read. Everyone who practices or teaches DOE should read this book." - Douglas C. Montgomery, Regents Professor, Department of Industrial Engineering, Arizona State University "It's been said: 'Design for the experiment, don't experiment for the design.' This book ably demonstrates this notion by showing how tailor-made, optimal designs can be effectively employed to meet a client's actual needs. It should be required reading for anyone interested in using the design of experiments in industrial settings." —Christopher J. Nachtsheim, Frank A Donaldson Chair in Operations Management, Carlson School of Management, University of Minnesota This book demonstrates the utility of the computer-aided optimal design approach using real industrial examples. These examples address questions such as the following: How can I do screening inexpensively if I have dozens of factors to investigate? What can I do if I have day-to-day variability and I can only perform 3 runs a day? How can I do RSM cost effectively if I have categorical factors? How can I design and analyze experiments when there is a factor that can only be changed a few times over the study? How can I include both ingredients in a mixture and processing factors in the same study? How can I design an experiment if there are many factor combinations that are impossible to run? How can I make sure that a time trend due to warming up of equipment does not affect the conclusions from a study? How can I take into account batch information in when designing experiments involving multiple batches? How can I add runs to a botched experiment to resolve ambiguities? While answering these questions the book also shows how to evaluate and compare designs. This allows researchers to make sensible trade-offs between the cost of experimentation and the amount of information they obtain.

Optimal Experimental Design


Optimal Experimental Design

Author: Jesús López-Fidalgo

language: en

Publisher: Springer Nature

Release Date: 2023-09-12


DOWNLOAD





This textbook provides a concise introduction to optimal experimental design and efficiently prepares the reader for research in the area. It presents the common concepts and techniques for linear and nonlinear models as well as Bayesian optimal designs. The last two chapters are devoted to particular themes of interest, including recent developments and hot topics in optimal experimental design, and real-world applications. Numerous examples and exercises are included, some of them with solutions or hints, as well as references to the existing software for computing designs. The book is primarily intended for graduate students and young researchers in statistics and applied mathematics who are new to the field of optimal experimental design. Given the applications and the way concepts and results are introduced, parts of the text will also appeal to engineers and other applied researchers.