Optimal Designs In Genomic Selection


Download Optimal Designs In Genomic Selection PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Optimal Designs In Genomic Selection book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Optimal Designs in Genomic Selection


Optimal Designs in Genomic Selection

Author: Josafhat Salinas Ruiz

language: en

Publisher:

Release Date: 2015


DOWNLOAD





Recently, many plant and animal breeders have been using genome-wide genetic markers and statistical methods to aid with selection of genetic material. These methods, termed genomic selection (GS), make selections based on estimates of breeding values obtained from a prediction model computed from phenotypic and genomic data of a training population. The precision of the predictions strongly depends on the genetic diversity of the training population (TP). The objectives of this research were (1) To present a new method for creating a TP that maximizes genetic diversity using either the most important genomic markers or the first few principal components (PCs) of the genomic data as inputs into A, D, and V optimal design algorithms; and (2) To evaluate the average predictive ability of the A, D, and V optimal TPs and compare their predictabilities with TPs based on random sampling, the commonly used approach. Using data from the University of Nebraska red winter wheat breeding program, results showed that when created the TP using either the most significant markers or the first PCs, the gain of the average predictive ability was higher in all optimal designs compared with random sampling with an average increase by 13.425% over random sampling. In addition, it was estimated that genetic gains of selection can be increased by 2.8348 and 3.3538 times when using the p1 significant markers and the first p1 PCs compared with the genetic gain of 1.8306 random sampling TP, respectively.

Genomic Selection in Plants


Genomic Selection in Plants

Author: Ani A. Elias

language: en

Publisher: CRC Press

Release Date: 2022-08-18


DOWNLOAD





Genomic selection (GS) is a promising tool in the field of breeding especially in the era where genomic data is becoming cheaper. The potential of this tool has not been realized due to its limited adaptation in various crops. Marker Assisted Selection (MAS) has been the method of choice for plant breeders while using the genomic information in the breeding pipeline. MAS, however, fails to capture vital minor gene effects while focusing only on the major genes, which is not ideal for breeding advancement especially for quantitative traits such as yield. The main aim of statistical methodologies coming under the umbrella of GS on using the whole genome information is to predict potential candidates for breeding advancement while optimizing the use of resources such as land, manpower, and most importantly time. Lack of proper understanding of the methods and their applications is one of the reasons why breeders shy away from this tool. The book is meant for biologists, especially breeders, and provides a comprehensive idea of the statistical methodologies used in GS, guidance on the choice of models, and design of datasets. The book also encourages the readers to adopt GS by demonstrating the current scenarios of these models in some of the important crops among oilseeds, vegetables, legumes, tuber crops, and cereals. For ease of implementation of GS, the book also provides hands-on scripts on GS data design and modeling in a popular open-source statistical program. Additionally, prospective in GS model development and thereby enhancement in crop improvement programs is discussed.

Genomic Selection: Lessons Learned and Perspectives


Genomic Selection: Lessons Learned and Perspectives

Author: Johannes W. R. Martini

language: en

Publisher: Frontiers Media SA

Release Date: 2022-09-15


DOWNLOAD





Genomic selection (GS) has been the most prominent topic in breeding science in the last two decades. The continued interest is promoted by its huge potential impact on the efficiency of breeding. Predicting a breeding value based on molecular markers and phenotypic values of relatives may be used to manipulate three parameters of the breeder's equation. First, the accuracy of the selection may be improved by predicting the genetic value more reliably when considering the records of relatives and the realized genomic relationship. Secondly, genotyping and predicting may be more cost effective than comprehensive phenotyping. Resources can instead be allocated to increasing population sizes and selection intensity. The third, probably most important factor, is time. As shown in dairy cattle breeding, reducing cycle time by crossing selection candidates earlier may have the strongest impact on selection gain. Many different prediction models have been used, and different ways of using predicted values in a breeding program have been explored. We would like to address the questions: i. How did GS change breeding schemes of different crops in the last 20 years? ii. What was the impact on realized selection gain? iii. What would be the best structure of a crop-specific breeding scheme to exploit the full potential of GS? iv. What is the potential of hybrid prediction, epistasis effect models, deep learning methods and other extensions of the standard prediction of additive effects? v. What are the long-term effects of GS? vi. Can predictive breeding approaches also be used to harness genetic resources from germplasm banks in a more efficient way to adapt current germplasm to new environmental challenges? This Research Topic welcomes submissions of Original Research papers, Opinions, Perspectives, Reviews, and Mini-Reviews related to these themes: 1. Genomic selection: statistical methodology 2. The (optimal) use of GS in breeding schemes 3. Practical experiences with GS (selection gain, long-term effects, negative side effects) 4. Predictive approaches to harness genetic resources Concerning point 1): If an original research paper compares different methods empirically without theoretical considerations on when one or the other method should be better, the methods should be compared with at least five different data sets. The data sets should differ either in crop, genotyping method or its source, for instance from a breeding program or gene bank accessions. Concerning point 2): Manuscripts addressing the use of GS in breeding schemes should illustrate breeding schemes that are run in practice. General ideas about schemes that may be run in the future may be considered as 'Perspective' articles. Conflict of Interest statements: - Topic Editor Valentin Wimmer is affiliated to KWS SAAT SE & Co. KGaA, Germany. - Topic Editor Brian Gardunia is affiliated to Bayer Crop Sciences and has a collaboration with AbacusBio, and is an author on patents with Bayer Crop Sciences. The other Topic Editors did not disclose any conflicts of interest. Image credit: CIMMYT, reproduced under the CC BY-NC-SA 2.0 license