Optics Modeling And Visualization With Comsol Multiphysics

Download Optics Modeling And Visualization With Comsol Multiphysics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Optics Modeling And Visualization With Comsol Multiphysics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Optics Modeling and Visualization with COMSOL Multiphysics

Author: Hee C. Lim
language: en
Publisher: Createspace Independent Publishing Platform
Release Date: 2018-07-28
This manuscript is a step-by-step graphical instructions for COMSOL Multiphysics with Ray Optics Module and Wave Optics module modeling and computational physics simulation. All the example models investigated and visualized with the help of Finite Element Analysis are referenced from the standard USA undergraduate text on Optics by E. Hecht. The simulations include the use of geometrical ray tracings for point source, hemispherical, and conic rays as well as full electromagnetic waves source employing the Maxwell's wave equations for Gaussian waves input. Both 2D and 3D computational physics approach will be discussed with the introduction of the trick-of-the-trades meshings, and modeling skill besides setup options that are skillfully hidden in the simulation software from plain sight.The geometrical model covers 2D and 3D electromagnetic waves propagation in user defined refractive index domain; Laws of Refraction for 2D converging and diverging lens; Laws of Reflection for specular mirrors, 3D Prism, 3D Prism mirror equivalent system; Polarizations for 3D linear polarizers, 3D circular polarizer, 3D linear wave retarder such as half wave plate, quarter wave plate; the Theory of Superposition for the 2D Young's double slits Wavefront-splitting interference experiment, 3D thin film uniform thickness Amplitude-splitting interference experiment, 2D Michelson interferometer Mirrored-interference setup with the 1D interference fringes line graph; Fermat's principle for 2D single slits diffraction, 3D circular aperture diffraction experiment, 3D rectangular slit diffraction experiment, 3D diffraction gratings experiment with Fresnel near field and Fraunhofer far field diffraction pattern, diffraction pattern: Sinc() function observation discussions, the Limitation of ray tracing physics vs. full electromagnetic waves simulations in the physics of optics, the Babinet's principle of transparent openings or opaque obstacles diffraction slit; and finally the Modern optics of 2D and 3D LASER cavity multiphysics models with the application of multiple release time of rays for Stimulated Emission lasing. One of the most important and crucial component of the computational physics subject, the user customizable library of material properties that governs the realisticality of the final modeled results, is highlighted in the appendix section.
Optical Waveguides and Devices Modeling and Visualization Using COMSOL Multiphysics Volume 2

Author: Hee Lim
language: en
Publisher: Createspace Independent Publishing Platform
Release Date: 2018-10-20
This pictorial manuscript is a step-by-step graphical illustrations for waveguides and devices modeling and computational physics simulation using COMSOL Multiphysics with Ray Optics, Wave Optics and AC/DC Electrostatics modules. All the example models investigated and visualized with the help of Finite Element Analysis are referenced from the standard USA undergraduate text on Optical Guided Waves and Devices by Richard Syms and John Cozens. The simulations include the use of geometrical ray tracings for point source and full electromagnetic waves source employing the Maxwell's wave equations for plane wave input. Both 2D and 3D simulation results will help in visualize the electromagnetic field propagating inside the waveguides and devices. Readers without fundamental handle on optics modeling are suggested to read the Optics Modeling and Visualization with COMSOL Multiphysics: A step by step graphical instruction manuscripts for detailed discussion. These models may be expanded to post-graduate research and industrial photonics waveguides and devices development. There are 46 chapters of different 2D and 3D optical waveguides & devices structures modeled and simulated in Volume 1 and 2. Volume 1 models include 3D single mode optical fiber, planar waveguide, channel waveguide, longitudinal and transverse phase modulator, surface plasmon, optical square waveguide, tapered waveguide, FTIR beamsplitter in ray tracing and electromagnetic wave solvers, full prism coupler, halved prism coupler, plano convex overlay lens, overlay Luneburg lens, geodesic lens with control setup for resulted electric field comparison, corrugated gratings, transmission and reflection gratings, chirped grating lens, beam expander grating, grating coupler, chirped grating coupler, buried channel waveguide. Volume 2 models continue with the ridge channel waveguide, strip loaded channel waveguide, GaAs GaAlAs planar waveguide, GaAs GaAlAs heterostructure waveguide, radiation leaks at fiber bend, radiation leaks at waveguide bend, c-axis Calcite polarizer waveguide, integrated optic normal reflector, horn channel waveguide, Y-Junction waveguide, optical phase modulator, cut off modulator, electro optic Mach-Zehnder interferometer waveguide, parallel coupling waveguide, electro optic directional coupler, single polished fiber directional coupler, double polished fiber directional coupler, tunable-coupling strength of polished double fiber coupler, cross sectional coaxial fiber coupler, 2D directional coupler with tapered coupling, corrugated reflection gratings, optical fiber grating on half polished fiber coupler, and track-changing reflector with grating assisted-coupling fiber.
Optical Waveguides and Devices Modeling and Visualization Using COMSOL Multiphysics Volume 1

Author: Hee Lim
language: en
Publisher: Createspace Independent Publishing Platform
Release Date: 2018-10-19
This pictorial manuscript is a step-by-step graphical illustrations for waveguides and devices modeling and computational physics simulation using COMSOL Multiphysics with Ray Optics, Wave Optics and AC/DC Electrostatics modules. All the example models investigated and visualized with the help of Finite Element Analysis are referenced from the standard USA undergraduate text on Optical Guided Waves and Devices by Richard Syms and John Cozens. The simulations include the use of geometrical ray tracings for point source and full electromagnetic waves source employing the Maxwell's wave equations for plane wave input. Both 2D and 3D simulation results will help in visualize the electromagnetic field propagating inside the waveguides and devices. Readers without fundamental handle on optics modeling are suggested to read the Optics Modeling and Visualization with COMSOL Multiphysics: A step by step graphical instruction manuscripts for detailed discussion. These models may be expanded to post-graduate research and industrial photonics waveguides and devices development. There are 46 chapters of different 2D and 3D optical waveguides & devices structures modeled and simulated in Volume 1 and 2. Volume 1 models include 3D single mode optical fiber, planar waveguide, channel waveguide, longitudinal and transverse phase modulator, surface plasmon, optical square waveguide, tapered waveguide, FTIR beamsplitter in ray tracing and electromagnetic wave solvers, full prism coupler, halved prism coupler, plano convex overlay lens, overlay Luneburg lens, geodesic lens with control setup for resulted electric field comparison, corrugated gratings, transmission and reflection gratings, chirped grating lens, beam expander grating, grating coupler, chirped grating coupler, buried channel waveguide. Volume 2 models continue with the ridge channel waveguide, strip loaded channel waveguide, GaAs GaAlAs planar waveguide, GaAs GaAlAs heterostructure waveguide, radiation leaks at fiber bend, radiation leaks at waveguide bend, c-axis Calcite polarizer waveguide, integrated optic normal reflector, horn channel waveguide, Y-Junction waveguide, optical phase modulator, cut off modulator, electro optic Mach-Zehnder interferometer waveguide, parallel coupling waveguide, electro optic directional coupler, single polished fiber directional coupler, double polished fiber directional coupler, tunable-coupling strength of polished double fiber coupler, cross sectional coaxial fiber coupler, 2D directional coupler with tapered coupling, corrugated reflection gratings, optical fiber grating on half polished fiber coupler, and track-changing reflector with grating assisted-coupling fiber.