Optical Signal Processing In Highly Nonlinear Fibers


Download Optical Signal Processing In Highly Nonlinear Fibers PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Optical Signal Processing In Highly Nonlinear Fibers book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Optical Signal Processing in Highly Nonlinear Fibers


Optical Signal Processing in Highly Nonlinear Fibers

Author: Mário Fernando Santos Ferreira

language: en

Publisher: CRC Press

Release Date: 2020-05-18


DOWNLOAD





This book provides an updated description of the most relevant types of highly nonlinear fibers. It also describes some of their actual applications for nonlinear optical signal processing. Multiple types of highly nonlinear fibers are considered, such as silica-based conventional highly nonlinear fibers, tapered fibers, photonic crystal fibers, and fibers made of highly nonlinear materials, namely lead-silicate, tellurite, bismuth oxide, and chalcogenide glasses. Several nonlinear phenomena occurring on such highly nonlinear fibers are described and used to realize different functions in the area of all-optical signal processing.  Describes several nonlinear phenomena occurring on optical fibers, namely nonlinear phase modulation, parametric and stimulated scattering processes, optical solitons, and supercontinuum generation.  Discusses different types of highly nonlinear fibers, namely silica-based conventional highly nonlinear fibers, tapered fibers, and photonic crystal fibers.  Examines fibers made of highly nonlinear materials, namely lead-silicate, tellurite, bismuth oxide, and chalcogenide glasses.  Describes the application of several nonlinear phenomena occurring on highly nonlinear fibers to realize different functions in the area of all-optical signal processing, namely optical amplification, multiwavelength sources, pulse generation, optical regeneration, wavelength conversion, and optical switching. Mário F. S. Ferreira received his PhD degree in 1992 in physics from the University of Aveiro, Portugal, where he is now a professor in the Physics Department. Between 1990 and 1991, he was at the University of Essex, UK, performing experimental work on external cavity semiconductor lasers and nonlinear optical fiber amplifiers. His research interests have been concerned with the modeling and characterization of multisection semiconductor lasers, quantum well lasers, optical fiber amplifiers and lasers, soliton propagation, nanophotonics, optical sensors, polarization, and nonlinear effects in optical fibers. He has written more than 400 scientific journal and conference publications and several books in the area of mathematical physics, optics, and photonics. He has served as chair and committee member of multiple international conferences, as well as guest editor and advisory board member of several international journals.

Optical Signal Processing in Highly Nonlinear Fibers


Optical Signal Processing in Highly Nonlinear Fibers

Author: Mário Fernando Santos Ferreira

language: en

Publisher: CRC Press

Release Date: 2020-06-09


DOWNLOAD





This book provides an updated description of the most relevant types of highly nonlinear fibers. It also describes some of their actual applications for nonlinear optical signal processing. Multiple types of highly nonlinear fibers are considered, such as silica-based conventional highly nonlinear fibers, tapered fibers, photonic crystal fibers, and fibers made of highly nonlinear materials, namely lead-silicate, tellurite, bismuth oxide, and chalcogenide glasses. Several nonlinear phenomena occurring on such highly nonlinear fibers are described and used to realize different functions in the area of all-optical signal processing.  Describes several nonlinear phenomena occurring on optical fibers, namely nonlinear phase modulation, parametric and stimulated scattering processes, optical solitons, and supercontinuum generation.  Discusses different types of highly nonlinear fibers, namely silica-based conventional highly nonlinear fibers, tapered fibers, and photonic crystal fibers.  Examines fibers made of highly nonlinear materials, namely lead-silicate, tellurite, bismuth oxide, and chalcogenide glasses.  Describes the application of several nonlinear phenomena occurring on highly nonlinear fibers to realize different functions in the area of all-optical signal processing, namely optical amplification, multiwavelength sources, pulse generation, optical regeneration, wavelength conversion, and optical switching. Mário F. S. Ferreira received his PhD degree in 1992 in physics from the University of Aveiro, Portugal, where he is now a professor in the Physics Department. Between 1990 and 1991, he was at the University of Essex, UK, performing experimental work on external cavity semiconductor lasers and nonlinear optical fiber amplifiers. His research interests have been concerned with the modeling and characterization of multisection semiconductor lasers, quantum well lasers, optical fiber amplifiers and lasers, soliton propagation, nanophotonics, optical sensors, polarization, and nonlinear effects in optical fibers. He has written more than 400 scientific journal and conference publications and several books in the area of mathematical physics, optics, and photonics. He has served as chair and committee member of multiple international conferences, as well as guest editor and advisory board member of several international journals.

Ultrafast All-Optical Signal Processing Devices


Ultrafast All-Optical Signal Processing Devices

Author: Dr. Hiroshi Ishikawa

language: en

Publisher: John Wiley & Sons

Release Date: 2008-09-15


DOWNLOAD





Semiconductor-based Ultra-Fast All-Optical Signal Processing Devices –a key technology for the next generation of ultrahigh bandwidth optical communication systems! The introduction of ultra-fast communication systems based on all-optical signal processing is considered to be one of the most promising ways to handle the rapidly increasing global communication traffic. Such systems will enable real time super-high definition moving pictures such as high reality TV-conference, remote diagnosis and surgery, cinema entertainment and many other applications with small power consumption. The key issue to realize such systems is to develop ultra-fast optical devices such as light sources, all-optical gates and wavelength converters. Ultra-Fast All-Optical Signal Processing Devices discusses the state of the art development of semiconductor-based ultrafast all-optical devices, and their various signal processing applications for bit-rates 100Gb/s to 1Tb/s. Ultra-Fast All-Optical Signal Processing Devices: Provides a thorough and in-depth treatment of the most recent achievements in ultrafast all-optical devices Discusses future networks with applications such as HD-TV and super-high definition moving screens as a motivating background for devices research Covers mode-locked semiconductor lasers, electro-absorption modulator based 160Gb/s signal sources, SOA based symmetric Mach-Zehnder type all-optical gates, intersubband transition gate device, and more Explains the technical issues behind turning the ultra-fast optical devices into practical working tools Examples of above 160Gb/s transmission experiments Discusses future prospects of the ultra-fast signal processing devices This invaluable reference will provide device researchers and engineers in industry, researchers at universities (including graduate students, and post doctorial researchers and professors) and research institutes with a thorough understanding of ultrahigh bandwidth optical communication systems. Device and communication market watchers will also find this book useful.