Optical Semiconductor Devices

Download Optical Semiconductor Devices PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Optical Semiconductor Devices book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Optical Semiconductor Devices

This book is devoted to optical semiconductor devices and their numerous applications in telecommunications, optoelectronics, and consumer electronics-areas where signal processing or the transmission of signals across fiber optic cables is paramount. It introduces a new generation of devices that includes optical modulators, quantum well (QW) lasers, and photodiodes and explores new applications of more established devices such as semiconductor lasers, light-emitting diodes, and photodiodes. Mitsuo Fukuda examines the material properties, operation principles, fabrication, packaging, reliability, and applications of each device and offers a unique industrial perspective, discussing everything engineers and scientists need to know at different phases of research, development, and production. This guide to the state-of-the-art of optical semiconductor devices: * Helps you choose the right device for a given application. * Covers important performance data such as temperature and optical feedback noise in lasers. * Highlights epitaxial growth techniques and fabrication for each device. * Features one hundred figures and an extensive bibliography. * Provides a clear and concise treatment, unencumbered by excessive theory Optical Semiconductor Devices is an essential resource for engineers and researchers in telecommunications and optoelectronics, equipment designers and manufacturers, and graduate students and scholars interested in this rapidly evolving field.
Semiconductor Optoelectronic Devices

Optoelectronics has become an important part of our lives. Wherever light is used to transmit information, tiny semiconductor devices are needed to transfer electrical current into optical signals and vice versa. Examples include light emitting diodes in radios and other appliances, photodetectors in elevator doors and digital cameras, and laser diodes that transmit phone calls through glass fibers. Such optoelectronic devices take advantage of sophisticated interactions between electrons and light. Nanometer scale semiconductor structures are often at the heart of modern optoelectronic devices. Their shrinking size and increasing complexity make computer simulation an important tool to design better devices that meet ever rising perfomance requirements. The current need to apply advanced design software in optoelectronics follows the trend observed in the 1980's with simulation software for silicon devices. Today, software for technology computer-aided design (TCAD) and electronic design automation (EDA) represents a fundamental part of the silicon industry. In optoelectronics, advanced commercial device software has emerged recently and it is expected to play an increasingly important role in the near future. This book will enable students, device engineers, and researchers to more effectively use advanced design software in optoelectronics. - Provides fundamental knowledge in semiconductor physics and in electromagnetics, while helping to understand and use advanced device simulation software - Demonstrates the combination of measurements and simulations in order to obtain realistic results and provides data on all required material parameters - Gives deep insight into the physics of state-of-the-art devices and helps to design and analyze of modern optoelectronic devices
Materials and Reliability Handbook for Semiconductor Optical and Electron Devices

Author: Osamu Ueda
language: en
Publisher: Springer Science & Business Media
Release Date: 2012-09-24
Materials and Reliability Handbook for Semiconductor Optical and Electron Devices provides comprehensive coverage of reliability procedures and approaches for electron and photonic devices. These include lasers and high speed electronics used in cell phones, satellites, data transmission systems and displays. Lifetime predictions for compound semiconductor devices are notoriously inaccurate due to the absence of standard protocols. Manufacturers have relied on extrapolation back to room temperature of accelerated testing at elevated temperature. This technique fails for scaled, high current density devices. Device failure is driven by electric field or current mechanisms or low activation energy processes that are masked by other mechanisms at high temperature. The Handbook addresses reliability engineering for III-V devices, including materials and electrical characterization, reliability testing, and electronic characterization. These are used to develop new simulation technologies for device operation and reliability, which allow accurate prediction of reliability as well as the design specifically for improved reliability. The Handbook emphasizes physical mechanisms rather than an electrical definition of reliability. Accelerated aging is useful only if the failure mechanism is known. The Handbook also focuses on voltage and current acceleration stress mechanisms.