Optical Devices In Communication And Computation

Download Optical Devices In Communication And Computation PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Optical Devices In Communication And Computation book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Optical Devices in Communication and Computation

"Optical devices in communication and computation have a significant impact on our daily life, although we may not even be aware of their existence, as in case of inter-continent fiber cables that connect people world-wide, making it a global community. Fiber-optic communication is a method of transmitting information from one place to another by sending pulses of light through an optical fiber. The light forms an electromagnetic carrier wave that is modulated to carry information. First developed in the 1970s, fiber-optics have revolutionized the telecommunications industry and have played a major role in the advent of the Information Age. Because of its advantages over electrical transmission, optical fibers have largely replaced copper wire communications in core networks in the developed world. Optical Devices in Communication and Computation emphasizes on recent developments of theoretical analysis, designs of novel nano-photonic structures and functional materials for optical instrumentation. Everywhere on this planet hair-thin optical fibers carry vast quantities of information from place to place. There are many desirable properties of optical fibers for carrying this information. They have enormous information-carrying capacity, are low cost, and possess immunity from the many disturbances that can afflict electrical wires and wireless communication links. The superiority of optical fibers for carrying information from place to place is leading to their rapidly replacing older technologies. Optical fibers have played a key role in making possible the extraordinary growth in world-wide communications that has occurred in the last 25 years, and are vital in enabling the proliferating use of the Internet."
Optical Communication Theory and Techniques

Author: Enrico Forestieri
language: en
Publisher: Springer Science & Business Media
Release Date: 2006-01-26
Since the advent of optical communications, a greattechnological effort has been devoted to the exploitation of the huge bandwidth of optical fibers. Sta- ing from a few Mb/s single channel systems, a fast and constant technological development has led to the actual 10 Gb/s per channel dense wavelength - vision multiplexing (DWDM) systems, with dozens of channels on a single fiber. Transmitters and receivers are now ready for 40 Gb/s, whereas hundreds of channels can be simultaneously amplified by optical amplifiers. Nevertheless, despite such a pace in technological progress, optical c- munications are still in a primitive stage if compared, for instance, to radio communications: the widely spread on-off keying (OOK) modulation format is equivalent to the rough amplitude modulation (AM) format, whereas the DWDM technique is nothing more than the optical version of the frequency - vision multiplexing (FDM) technique. Moreover, adaptive equalization, ch- nel coding or maximum likelihood detection are still considered something “exotic” in the optical world. This is mainly due to the favourable char- teristics of the fiber optic channel (large bandwidth, low attenuation, channel stability, ...), which so far allowed us to use very simple transmission and detection techniques.
Optical Devices in Communication and Computation

Optical devices in communication and computation have a significant impact on our daily life, although we may not even be aware of their existence, as in case of inter-continent fiber cables that connect people around the world, making it a global village. Novel nanoscale structures have demonstrated a wide range of unique features; therefore have became a hot research topic. Not only that the novel structural materials are used in biomedical therapy, but also the nature inspires the design of innovative optical structures. In this book, we focus on recent developments of theoretical analysis, designs of novel nano-photonic structures and functional materials for optical instrumentation. This book is constituted of 10 chapters contributed by renowned researchers from all over the world who work in the forefront of this field.