On The Geometry Of Some Special Projective Varieties


Download On The Geometry Of Some Special Projective Varieties PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get On The Geometry Of Some Special Projective Varieties book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

On the Geometry of Some Special Projective Varieties


On the Geometry of Some Special Projective Varieties

Author: Francesco Russo

language: en

Publisher: Springer

Release Date: 2016-01-25


DOWNLOAD





Providing an introduction to both classical and modern techniques in projective algebraic geometry, this monograph treats the geometrical properties of varieties embedded in projective spaces, their secant and tangent lines, the behavior of tangent linear spaces, the algebro-geometric and topological obstructions to their embedding into smaller projective spaces, and the classification of extremal cases. It also provides a solution of Hartshorne’s Conjecture on Complete Intersections for the class of quadratic manifolds and new short proofs of previously known results, using the modern tools of Mori Theory and of rationally connected manifolds. The new approach to some of the problems considered can be resumed in the principle that, instead of studying a special embedded manifold uniruled by lines, one passes to analyze the original geometrical property on the manifold of lines passing through a general point and contained in the manifold. Once this embedded manifold, usually of lower codimension, is classified, one tries to reconstruct the original manifold, following a principle appearing also in other areas of geometry such as projective differential geometry or complex geometry.

The Geometry of some special Arithmetic Quotients


The Geometry of some special Arithmetic Quotients

Author: Bruce Hunt

language: en

Publisher: Springer

Release Date: 2006-11-14


DOWNLOAD





The book discusses a series of higher-dimensional moduli spaces, of abelian varieties, cubic and K3 surfaces, which have embeddings in projective spaces as very special algebraic varieties. Many of these were known classically, but in the last chapter a new such variety, a quintic fourfold, is introduced and studied. The text will be of interest to all involved in the study of moduli spaces with symmetries, and contains in addition a wealth of material which has been only accessible in very old sources, including a detailed presentation of the solution of the equation of 27th degree for the lines on a cubic surface.

Lectures on Curves, Surfaces and Projective Varieties


Lectures on Curves, Surfaces and Projective Varieties

Author: Mauro Beltrametti

language: en

Publisher: European Mathematical Society

Release Date: 2009


DOWNLOAD





This book offers a wide-ranging introduction to algebraic geometry along classical lines. It consists of lectures on topics in classical algebraic geometry, including the basic properties of projective algebraic varieties, linear systems of hypersurfaces, algebraic curves (with special emphasis on rational curves), linear series on algebraic curves, Cremona transformations, rational surfaces, and notable examples of special varieties like the Segre, Grassmann, and Veronese varieties. An integral part and special feature of the presentation is the inclusion of many exercises, not easy to find in the literature and almost all with complete solutions. The text is aimed at students in the last two years of an undergraduate program in mathematics. It contains some rather advanced topics suitable for specialized courses at the advanced undergraduate or beginning graduate level, as well as interesting topics for a senior thesis. The prerequisites have been deliberately limited to basic elements of projective geometry and abstract algebra. Thus, for example, some knowledge of the geometry of subspaces and properties of fields is assumed. The book will be welcomed by teachers and students of algebraic geometry who are seeking a clear and panoramic path leading from the basic facts about linear subspaces, conics and quadrics to a systematic discussion of classical algebraic varieties and the tools needed to study them. The text provides a solid foundation for approaching more advanced and abstract literature.