On The Existence Of Feller Semigroups With Boundary Conditions

Download On The Existence Of Feller Semigroups With Boundary Conditions PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get On The Existence Of Feller Semigroups With Boundary Conditions book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
On the Existence of Feller Semigroups with Boundary Conditions

Author: Kazuaki Taira
language: en
Publisher: American Mathematical Soc.
Release Date: 1992
This paper is devoted to the functional analytic approach to the problem of construction of Feller semigroups with Ventcel' (Wentzell) boundary conditions. This paper considers the non-transversal case and solves from the viewpoint of functional analysis the problem of construction of Feller semigroups for elliptic Waldenfels operators. Intuitively, our result may be stated as follows: One can construct a Feller semigroup corresponding to such a diffusion phenomenon that a Markovian particle moves both by jumps and continuously in the state space until it "dies" at which time it reaches the set where the absorption phenomenon occurs.
Semigroups, Boundary Value Problems and Markov Processes

A careful and accessible exposition of functional analytic methods in stochastic analysis is provided in this book. It focuses on the interrelationship between three subjects in analysis: Markov processes, semi groups and elliptic boundary value problems. The author studies a general class of elliptic boundary value problems for second-order, Waldenfels integro-differential operators in partial differential equations and proves that this class of elliptic boundary value problems provides a general class of Feller semigroups in functional analysis. As an application, the author constructs a general class of Markov processes in probability in which a Markovian particle moves both by jumps and continuously in the state space until it 'dies' at the time when it reaches the set where the particle is definitely absorbed. Augmenting the 1st edition published in 2004, this edition includes four new chapters and eight re-worked and expanded chapters. It is amply illustrated and all chapters are rounded off with Notes and Comments where bibliographical references are primarily discussed. Thanks to the kind feedback from many readers, some errors in the first edition have been corrected. In order to keep the book up-to-date, new references have been added to the bibliography. Researchers and graduate students interested in PDEs, functional analysis and probability will find this volume useful.
Boundary Value Problems and Markov Processes

This 3rd edition provides an insight into the mathematical crossroads formed by functional analysis (the macroscopic approach), partial differential equations (the mesoscopic approach) and probability (the microscopic approach) via the mathematics needed for the hard parts of Markov processes. It brings these three fields of analysis together, providing a comprehensive study of Markov processes from a broad perspective. The material is carefully and effectively explained, resulting in a surprisingly readable account of the subject. The main focus is on a powerful method for future research in elliptic boundary value problems and Markov processes via semigroups, the Boutet de Monvel calculus. A broad spectrum of readers will easily appreciate the stochastic intuition that this edition conveys. In fact, the book will provide a solid foundation for both researchers and graduate students in pure and applied mathematics interested in functional analysis, partial differential equations, Markov processes and the theory of pseudo-differential operators, a modern version of the classical potential theory.