On The Algebraic Denotational Specifications Of Programming Language Semantics

Download On The Algebraic Denotational Specifications Of Programming Language Semantics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get On The Algebraic Denotational Specifications Of Programming Language Semantics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Semantics and Algebraic Specification

Author: Jens Palsberg
language: en
Publisher: Springer Science & Business Media
Release Date: 2009-08-28
proceedings of the symposium. Somecontributorswereunabletoattendthe event.
Logic and Algebra of Specification

Author: Friedrich L. Bauer
language: en
Publisher: Springer Science & Business Media
Release Date: 2012-12-06
For some years, specification of software and hardware systems has been influenced not only by algebraic methods but also by new developments in logic. These new developments in logic are partly based on the use of algorithmic techniques in deduction and proving methods, but are alsodue to new theoretical advances, to a great extent stimulated by computer science, which have led to new types of logic and new logical calculi. The new techniques, methods and tools from logic, combined with algebra-based ones, offer very powerful and useful tools for the computer scientist, which may soon become practical for commercial use, where, in particular, more powerful specification tools are needed for concurrent and distributed systems. This volume contains papers based on lectures by leading researchers which were originally given at an international summer school held in Marktoberdorf in 1991. The papers aim to give a foundation for combining logic and algebra for the purposes of specification under the aspects of automated deduction, proving techniques, concurrency and logic, abstract data types and operational semantics, and constructive methods.
The Formal Semantics of Programming Languages

The Formal Semantics of Programming Languages provides the basic mathematical techniques necessary for those who are beginning a study of the semantics and logics of programming languages. These techniques will allow students to invent, formalize, and justify rules with which to reason about a variety of programming languages. Although the treatment is elementary, several of the topics covered are drawn from recent research, including the vital area of concurency. The book contains many exercises ranging from simple to miniprojects.Starting with basic set theory, structural operational semantics is introduced as a way to define the meaning of programming languages along with associated proof techniques. Denotational and axiomatic semantics are illustrated on a simple language of while-programs, and fall proofs are given of the equivalence of the operational and denotational semantics and soundness and relative completeness of the axiomatic semantics. A proof of Godel's incompleteness theorem, which emphasizes the impossibility of achieving a fully complete axiomatic semantics, is included. It is supported by an appendix providing an introduction to the theory of computability based on while-programs. Following a presentation of domain theory, the semantics and methods of proof for several functional languages are treated. The simplest language is that of recursion equations with both call-by-value and call-by-name evaluation. This work is extended to lan guages with higher and recursive types, including a treatment of the eager and lazy lambda-calculi. Throughout, the relationship between denotational and operational semantics is stressed, and the proofs of the correspondence between the operation and denotational semantics are provided. The treatment of recursive types - one of the more advanced parts of the book - relies on the use of information systems to represent domains. The book concludes with a chapter on parallel programming languages, accompanied by a discussion of methods for specifying and verifying nondeterministic and parallel programs.