On Some Numerical Methods In Continuum Mechanics

Download On Some Numerical Methods In Continuum Mechanics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get On Some Numerical Methods In Continuum Mechanics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Mathematical Methods in Continuum Mechanics of Solids

This book primarily focuses on rigorous mathematical formulation and treatment of static problems arising in continuum mechanics of solids at large or small strains, as well as their various evolutionary variants, including thermodynamics. As such, the theory of boundary- or initial-boundary-value problems for linear or quasilinear elliptic, parabolic or hyperbolic partial differential equations is the main underlying mathematical tool, along with the calculus of variations. Modern concepts of these disciplines as weak solutions, polyconvexity, quasiconvexity, nonsimple materials, materials with various rheologies or with internal variables are exploited. This book is accompanied by exercises with solutions, and appendices briefly presenting the basic mathematical concepts and results needed. It serves as an advanced resource and introductory scientific monograph for undergraduate or PhD students in programs such as mathematical modeling, applied mathematics, computational continuum physics and engineering, as well as for professionals working in these fields.
Notes on Continuum Mechanics

Author: Eduardo WV Chaves
language: en
Publisher: Springer Science & Business Media
Release Date: 2013-06-13
This publication is aimed at students, teachers, and researchers of Continuum Mechanics and focused extensively on stating and developing Initial Boundary Value equations used to solve physical problems. With respect to notation, the tensorial, indicial and Voigt notations have been used indiscriminately. The book is divided into twelve chapters with the following topics: Tensors, Continuum Kinematics, Stress, The Objectivity of Tensors, The Fundamental Equations of Continuum Mechanics, An Introduction to Constitutive Equations, Linear Elasticity, Hyperelasticity, Plasticity (small and large deformations), Thermoelasticity (small and large deformations), Damage Mechanics (small and large deformations), and An Introduction to Fluids. Moreover, the text is supplemented with over 280 figures, over 100 solved problems, and 130 references.
Methods of Fundamental Solutions in Solid Mechanics

Methods of Fundamental Solutions in Solid Mechanics presents the fundamentals of continuum mechanics, the foundational concepts of the MFS, and methodologies and applications to various engineering problems. Eight chapters give an overview of meshless methods, the mechanics of solids and structures, the basics of fundamental solutions and radical basis functions, meshless analysis for thin beam bending, thin plate bending, two-dimensional elastic, plane piezoelectric problems, and heat transfer in heterogeneous media. The book presents a working knowledge of the MFS that is aimed at solving real-world engineering problems through an understanding of the physical and mathematical characteristics of the MFS and its applications. - Explains foundational concepts for the method of fundamental solutions (MFS) for the advanced numerical analysis of solid mechanics and heat transfer - Extends the application of the MFS for use with complex problems - Considers the majority of engineering problems, including beam bending, plate bending, elasticity, piezoelectricity and heat transfer - Gives detailed solution procedures for engineering problems - Offers a practical guide, complete with engineering examples, for the application of the MFS to real-world physical and engineering challenges