On Birational Transformations And Automorphisms Of Some Hyperk Hler Manifolds


Download On Birational Transformations And Automorphisms Of Some Hyperk Hler Manifolds PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get On Birational Transformations And Automorphisms Of Some Hyperk Hler Manifolds book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

On Birational Transformations and Automorphisms of Some Hyperkähler Manifolds


On Birational Transformations and Automorphisms of Some Hyperkähler Manifolds

Author: Pietro Beri

language: en

Publisher:

Release Date: 2020


DOWNLOAD





My thesis work focuses on double EPW sextics, a family of hyperkähler manifolds which, in the general case, are equivalent by deformation to Hilbert's scheme of two points on a K3 surface. In particular I used the link that these manifolds have with Gushel-Mukai varieties, which are Fano varieties in a Grassmannian if their dimension is greater than two, K3 surfaces if their dimension is two.The first chapter contains some reminders of the theory of Pell's equations and lattices, which are fundamental for the study of hyperkähler manifolds. Then I recall the construction which associates a double covering to a sheaf on a normal variety.In the second chapter I discuss hyperkähler manifolds and describe their first properties; I also introduce the first case of hyperkähler manifold that has been studied, the K3 surfaces. This family of surfaces corresponds to the hyperkähler manifolds in dimension two.Furthermore, I briefly present some of the latest results in this field, in particular I define different module spaces of hyperkähler manifolds, and I describe the action of automorphism on the second cohomology group of a hyperkähler manifold.The tools introduced in the previous chapter do not provide a geometrical description of the action of automorphism on the manifold for the case of the Hilbert scheme of points on a general K3 surface. In the third chapter, I therefore introduce a geometrical description up to a certain deformation. This deformation takes into account the structure of Hilbert scheme. To do so, I introduce an isomorphism between a connected component of the module space of manifolds of type K3[n] with a polarization, and the module space of manifolds of the same type with an involution of which the rank of the invariant is one. This is a generalization of a result obtained by Boissière, An. Cattaneo, Markushevich and Sarti in dimension two. The first two parts of this chapter are a joint work with Alberto Cattaneo.In the fourth chapter, I define EPW sextics, using O'Grady's argument, which shows that a double covering of a EPW sextic in the general case is deformation equivalent to the Hilbert square of a K3 surface. Next, I present the Gushel-Mukai varieties, with emphasis on their connection with EPW sextics; this approach was introduced by O'Grady, continued by Iliev and Manivel and systematized by Kuznetsov and Debarre.In the fifth chapter, I use the tools introduced in the fourth chapter in the case where a K3 surface can be associated to a EPW sextic X. In this case I give explicit conditions on the Picard group of the surface for X to be a hyperkähler manifold. This allows to use Torelli's theorem for a K3 surface to demonstrate the existence of some automorphisms on X. I give some bounds on the structure of a subgroup of automorphisms of a sextic EPW under conditions of existence of a fixed point for the action of the group.Still in the case of the existence of a K3 surface associated with a EPW sextic X, I improve the bound obtained previously on the automorphisms of X, by giving an explicit link with the number of conics on the K3 surface. I show that the symplecticity of an automorphism on X depends on the symplecticity of a corresponding automorphism on the surface K3.The sixth chapter is a work in collaboration with Alberto Cattaneo. I study the group of birational automorphisms on Hilbert's scheme of points on a projective surface K3, in the generic case. This generalizes the result obtained in dimension two by Debarre and Macrì. Then I study the cases where there is a birational model where these automorphisms are regular. I describe in a geometrical way some involutions, whose existence has been proved before.

Noncommutative Geometry and Particle Physics


Noncommutative Geometry and Particle Physics

Author: Walter D. van Suijlekom

language: en

Publisher: Springer

Release Date: 2014-07-21


DOWNLOAD





This book provides an introduction to noncommutative geometry and presents a number of its recent applications to particle physics. It is intended for graduate students in mathematics/theoretical physics who are new to the field of noncommutative geometry, as well as for researchers in mathematics/theoretical physics with an interest in the physical applications of noncommutative geometry. In the first part, we introduce the main concepts and techniques by studying finite noncommutative spaces, providing a “light” approach to noncommutative geometry. We then proceed with the general framework by defining and analyzing noncommutative spin manifolds and deriving some main results on them, such as the local index formula. In the second part, we show how noncommutative spin manifolds naturally give rise to gauge theories, applying this principle to specific examples. We subsequently geometrically derive abelian and non-abelian Yang-Mills gauge theories, and eventually the full Standard Model of particle physics, and conclude by explaining how noncommutative geometry might indicate how to proceed beyond the Standard Model.

Mathematical Lives


Mathematical Lives

Author: CLAUDIO BARTOCCI

language: en

Publisher: Springer Science & Business Media

Release Date: 2010-10-01


DOWNLOAD





Steps forward in mathematics often reverberate in other scientific disciplines, and give rise to innovative conceptual developments or find surprising technological applications. This volume brings to the forefront some of the proponents of the mathematics of the twentieth century, who have put at our disposal new and powerful instruments for investigating the reality around us. The portraits present people who have impressive charisma and wide-ranging cultural interests, who are passionate about defending the importance of their own research, are sensitive to beauty, and attentive to the social and political problems of their times. What we have sought to document is mathematics’ central position in the culture of our day. Space has been made not only for the great mathematicians but also for literary texts, including contributions by two apparent interlopers, Robert Musil and Raymond Queneau, for whom mathematical concepts represented a valuable tool for resolving the struggle between ‘soul and precision.’