Numerical Solution Of Stochastic Differential Equations

Download Numerical Solution Of Stochastic Differential Equations PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Numerical Solution Of Stochastic Differential Equations book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Numerical Solution of Stochastic Differential Equations

Author: Peter E. Kloeden
language: en
Publisher: Springer Science & Business Media
Release Date: 2011-06-15
The numerical analysis of stochastic differential equations (SDEs) differs significantly from that of ordinary differential equations. This book provides an easily accessible introduction to SDEs, their applications and the numerical methods to solve such equations. From the reviews: "The authors draw upon their own research and experiences in obviously many disciplines... considerable time has obviously been spent writing this in the simplest language possible." --ZAMP
Numerical Solution of SDE Through Computer Experiments

Author: Peter Eris Kloeden
language: en
Publisher: Springer Science & Business Media
Release Date: 2012-12-06
The numerical solution of stochastic differential equations is becoming an in dispensible worktool in a multitude of disciplines, bridging a long-standing gap between the well advanced theory of stochastic differential equations and its application to specific examples. This has been made possible by the much greater accessibility to high-powered computers at low-cost combined with the availability of new, effective higher order numerical schemes for stochastic dif ferential equations. Many hitherto intractable problems can now be tackled successfully and more realistic modelling with stochastic differential equations undertaken. The aim of this book is to provide a computationally oriented introduction to the numerical solution of stochastic differential equations, using computer experiments to develop in the readers an ability to undertake numerical studies of stochastic differential equations that arise in their own disciplines and an understanding, intuitive at least, of the necessary theoretical background. It is related to, but can also be used independently of the monograph P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations, Applications of Mathematics Series Vol. 23, Springer-Verlag, Hei delberg, 1992, which is more theoretical, presenting a systematic treatment of time-discretized numerical schemes for stochastic differential equations along with background material on probability and stochastic calculus. To facilitate the parallel use of both books, the presentation of material in this book follows that in the monograph closely.
Numerical Solution of Stochastic Differential Equations with Jumps in Finance

Author: Eckhard Platen
language: en
Publisher: Springer Science & Business Media
Release Date: 2010-07-23
In financial and actuarial modeling and other areas of application, stochastic differential equations with jumps have been employed to describe the dynamics of various state variables. The numerical solution of such equations is more complex than that of those only driven by Wiener processes, described in Kloeden & Platen: Numerical Solution of Stochastic Differential Equations (1992). The present monograph builds on the above-mentioned work and provides an introduction to stochastic differential equations with jumps, in both theory and application, emphasizing the numerical methods needed to solve such equations. It presents many new results on higher-order methods for scenario and Monte Carlo simulation, including implicit, predictor corrector, extrapolation, Markov chain and variance reduction methods, stressing the importance of their numerical stability. Furthermore, it includes chapters on exact simulation, estimation and filtering. Besides serving as a basic text on quantitative methods, it offers ready access to a large number of potential research problems in an area that is widely applicable and rapidly expanding. Finance is chosen as the area of application because much of the recent research on stochastic numerical methods has been driven by challenges in quantitative finance. Moreover, the volume introduces readers to the modern benchmark approach that provides a general framework for modeling in finance and insurance beyond the standard risk-neutral approach. It requires undergraduate background in mathematical or quantitative methods, is accessible to a broad readership, including those who are only seeking numerical recipes, and includes exercises that help the reader develop a deeper understanding of the underlying mathematics.