Numerical Prediction Of Curing And Process Induced Distortion Of Composite Structures

Download Numerical Prediction Of Curing And Process Induced Distortion Of Composite Structures PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Numerical Prediction Of Curing And Process Induced Distortion Of Composite Structures book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Numerical prediction of curing and process-induced distortion of composite structures

Author: Bernath, Alexander
language: en
Publisher: KIT Scientific Publishing
Release Date: 2021-10-29
Fiber-reinforced materials offer a huge potential for lightweight design of load-bearing structures. However, high-volume production of such parts is still a challenge in terms of cost efficiency and competitiveness. Numerical process simulation can be used to analyze underlying mechanisms and to find a suitable process design. In this study, the curing process of the resin is investigated with regard to its influence on RTM mold filling and process-induced distortion.
Residual Stresses in Composite Materials

Author: Mahmood M. Shokrieh
language: en
Publisher: Woodhead Publishing
Release Date: 2021-06-22
The residual stress is a common phenomenon in composite materials. They can either add to or significantly reduce material strength. Because of the increasing demand for high-strength, lightweight materials such as composites and their wide range of applications; it is critical that the residual stresses of composite materials are understood and measured correctly.The first edition of this book consists of thirteen chapters divided into two parts. The first part reviews destructive and non-destructive testing (NDT) techniques for measuring residual stresses. There are also additional chapters on using mathematical (analytical and numerical) methods for the calculation of residual stresses in composite materials. These include the simulated hole drilling method, the slitting/crack compliance method, measuring residual stresses in homogeneous and composite glass materials using photoelastic techniques, and modeling residual stresses in composite materials. The second part of the book discusses measuring residual stresses in different types of composites including polymer and metal matrix composites. The addition of nanoparticles to the matrix of polymeric composites as a new technique for the reduction of residual stresses is also discussed.In the Second Edition of this book, each of the original chapters of the first edition has been fully updated, taking into account the latest research and new developments. There are also five new chapters on the theoretical and experimental studies of residual stresses in the composite integrated circuits; residual stresses in additive manufacturing of polymers and polymer matrix composites; residual stresses in metal matrix composites fabricated by additive manufacturing; the eigenstrain based method for the incremental hole-drilling technique; and the estimation of residual stresses in polymer matrix composites using the digital image correlation technique.Residual Stresses in Composite Materials, Second Edition, provides a unique and comprehensive overview of this important topic and is an invaluable reference text for both academics and professionals working in the mechanical engineering, civil engineering, aerospace, automotive, marine, and sporting industries. - Presents the latest developments on theoretical and experimental studies of residual stresses in composites - Reviews destructive and non-destructive testing (NDT) techniques for measuring residual stresses - Discusses residual stresses in the polymer matrix, metal matrix, and ceramic matrix composites - Considers the addition of nanoparticles to the matrix as a new technique for reduction of residual stresses in polymeric composites - Introduces the latest advancements of research on the residual stresses in additive-manufactured polymer and metal matrix composites
Process simulation of wet compression moulding for continuous fibre-reinforced polymers

Author: Poppe, Christian Timo
language: en
Publisher: KIT Scientific Publishing
Release Date: 2022-07-18
Interdisciplinary development approaches for system-efficient lightweight design unite a comprehensive understanding of materials, processes and methods. This applies particularly to continuous fibre-reinforced plastics (CoFRPs), which offer high weight-specific material properties and enable load path-optimised designs. This thesis is dedicated to understanding and modelling Wet Compression Moulding (WCM) to facilitate large-volume production of CoFRP structural components.