Numerical Modelling In Robotics

Download Numerical Modelling In Robotics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Numerical Modelling In Robotics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Numerical Modelling in Robotics

Author: Edgar Alonso Martínez García
language: en
Publisher: OmniaScience
Release Date: 2015-10-06
Modern robotic systems are tied to operate autonomously in real-world environments performing a variety of complex tasks. Autonomous robots must rely on fundamental capabilities such as locomotion, trajectory tracking control, multi-sensor fusion, task/path planning, navigation, and real-time perception. Combining this knowledge is essential to design rolling, walking, aquatic, and hovering robots that sense and self-control. This book contains a mathematical modelling framework to support the learning of modern robotics and mechatronics, aimed at advanced undergraduates or first-year PhD students, as well as researchers and practitioners. The volume exposes a solid understanding of mathematical methods as a common modelling framework to properly interpret advanced robotic systems. Including numerical approximations, solution of linear and non-linear systems of equations, curves fitting, differentiation and integration of functions. The book is suitable for courses on robotics, mechatronics, sensing models, vehicles design and control, modelling, simulation, and mechanisms analysis. It is organised with 17 chapters divided in five parts that conceptualise classical mechanics to model a wide variety of applied robotics. It comprehends a hover-craft, an amphibious hexapod, self-reconfiguration and under-actuation of rolling and passive walking robots with Hoekens, Klann, and Jansen limbs for bipedal, quadruped, and octapod robots.
Flexible Robot Manipulators

This book discusses the latest developmens in modelling, simulation and control of flexible robot manipulators. Coverage includes an overall review of previously developed methodologies, a range of modelling approaches including classical techniques, parametric and neuromodelling approaches and numerical modelling/simulation techniques.