Numerical Methods For Polymeric Systems


Download Numerical Methods For Polymeric Systems PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Numerical Methods For Polymeric Systems book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Numerical Methods for Polymeric Systems


Numerical Methods for Polymeric Systems

Author: Stuart G. Whittington

language: en

Publisher: Springer Science & Business Media

Release Date: 2012-12-06


DOWNLOAD





Polymers occur in many different states and their physical properties are strongly correlated with their conformations. The theoretical investigation of the conformational properties of polymers is a difficult task and numerical methods play an important role in this field. This book contains contributions from a workshop on numerical methods for polymeric systems, held at the IMA in May 1996, which brought together chemists, physicists, mathematicians, computer scientists and statisticians with a common interest in numerical methods. The two major approaches used in the field are molecular dynamics and Monte Carlo methods, and the book includes reviews of both approaches as well as applications to particular polymeric systems. The molecular dynamics approach solves the Newtonian equations of motion of the polymer, giving direct information about the polymer dynamics as well as about static properties. The Monte Carlo approaches discussed in this book all involve sampling along a Markov chain defined on the configuration space of the system. An important feature of the book is the treatment of Monte Carlo methods, including umbrella sampling and multiple Markov chain methods, which are useful for strongly interacting systems such as polymers at low temperatures and in compact phases. The book is of interest to workers in polymer statistical mechanics and also to a wider audience interested in numerical methods and their application in polymeric systems.

Viscoelasticity of Polymers


Viscoelasticity of Polymers

Author: Kwang Soo Cho

language: en

Publisher: Springer

Release Date: 2016-05-30


DOWNLOAD





This book offers a comprehensive introduction to polymer rheology with a focus on the viscoelastic characterization of polymeric materials. It contains various numerical algorithms for the processing of viscoelastic data, from basic principles to advanced examples which are hard to find in the existing literature. The book takes a multidisciplinary approach to the study of the viscoelasticity of polymers, and is self-contained, including the essential mathematics, continuum mechanics, polymer science and statistical mechanics needed to understand the theories of polymer viscoelasticity. It covers recent achievements in polymer rheology, such as theoretical and experimental aspects of large amplitude oscillatory shear (LAOS), and numerical methods for linear viscoelasticity, as well as new insights into the interpretation of experimental data. Although the book is balanced between the theoretical and experimental aspects of polymer rheology, the author’s particular interest in the theoretical side will not remain hidden. Aimed at readers familiar with the mathematics and physics of engineering at an undergraduate level, the multidisciplinary approach employed enables researchers with various scientific backgrounds to expand their knowledge of polymer rheology in a systematic way.

Statistical Physics of Polymers


Statistical Physics of Polymers

Author: Toshihiro Kawakatsu

language: en

Publisher: Springer Science & Business Media

Release Date: 2013-03-09


DOWNLOAD





This book is an introductory textbook on the statistical mechanics of poly mers and complex fluids aimed at senior undergraduate and graduate stu dents and non-specialist researchers who are starting research in this field. Modern statistical mechanics on polymers and complex fluids is based on many fields, such as chemical physics, statistical mechanics, quantum me chanics, stochastic processes, theory of phase transitions, hydrodynamics, rheology, and so on. This book provides an overview of the basic concepts and methods used in current research on the physics of polymers and complex fluids. Using simple but essential examples, we describe how to derive the physical properties of polymers theoretically, focusing on the structure and dynamics on mesoscopic scales. Here, the term 'mesoscopic scales' means intermediate lengths and time scales between the microscopic atomic scale and the macroscopic scale. Properties on mesoscopic scales are the central issue of the physics of polymers and complex fluids, because these materials are well characterized by spatiotemporal structures on these scales, where we can extract universal properties that are independent of the microscopic details of the system.