Numerical Methods For Nonlinear Variational Problems

Download Numerical Methods For Nonlinear Variational Problems PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Numerical Methods For Nonlinear Variational Problems book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Numerical Methods for Nonlinear Variational Problems

Author: Roland Glowinski
language: en
Publisher: Springer Science & Business Media
Release Date: 2013-06-29
Many mechanics and physics problems have variational formulations making them appropriate for numerical treatment by finite element techniques and efficient iterative methods. This book describes the mathematical background and reviews the techniques for solving problems, including those that require large computations such as transonic flows for compressible fluids and the Navier-Stokes equations for incompressible viscous fluids. Finite element approximations and non-linear relaxation, augmented Lagrangians, and nonlinear least square methods are all covered in detail, as are many applications. "Numerical Methods for Nonlinear Variational Problems", originally published in the Springer Series in Computational Physics, is a classic in applied mathematics and computational physics and engineering. This long-awaited softcover re-edition is still a valuable resource for practitioners in industry and physics and for advanced students.
Lectures on Numerical Methods for Non-Linear Variational Problems

Author: R. Glowinski
language: en
Publisher: Springer Science & Business Media
Release Date: 2008-01-22
When Herb Keller suggested, more than two years ago, that we update our lectures held at the Tata Institute of Fundamental Research in 1977, and then have it published in the collection Springer Series in Computational Physics, we thought, at first, that it would be an easy task. Actually, we realized very quickly that it would be more complicated than what it seemed at first glance, for several reasons: 1. The first version of Numerical Methods for Nonlinear Variational Problems was, in fact, part of a set of monographs on numerical mat- matics published, in a short span of time, by the Tata Institute of Fun- mental Research in its well-known series Lectures on Mathematics and Physics; as might be expected, the first version systematically used the material of the above monographs, this being particularly true for Lectures on the Finite Element Method by P. G. Ciarlet and Lectures on Optimization—Theory and Algorithms by J. Cea. This second version had to be more self-contained. This necessity led to some minor additions in Chapters I-IV of the original version, and to the introduction of a chapter (namely, Chapter Y of this book) on relaxation methods, since these methods play an important role in various parts of this book.
Lagrange Multiplier Approach to Variational Problems and Applications

Lagrange multiplier theory provides a tool for the analysis of a general class of nonlinear variational problems and is the basis for developing efficient and powerful iterative methods for solving these problems. This comprehensive monograph analyzes Lagrange multiplier theory and shows its impact on the development of numerical algorithms for problems posed in a function space setting. The authors develop and analyze efficient algorithms for constrained optimization and convex optimization problems based on the augumented Lagrangian concept and cover such topics as sensitivity analysis, convex optimization, second order methods, and shape sensitivity calculus. General theory is applied to challenging problems in optimal control of partial differential equations, image analysis, mechanical contact and friction problems, and American options for the Black-Scholes model.