Numerical Methods For Metamaterial Design

Download Numerical Methods For Metamaterial Design PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Numerical Methods For Metamaterial Design book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Numerical Methods for Metamaterial Design

Author: Kenneth Diest
language: en
Publisher: Springer Science & Business Media
Release Date: 2013-08-13
This book describes a relatively new approach for the design of electromagnetic metamaterials. Numerical optimization routines are combined with electromagnetic simulations to tailor the broadband optical properties of a metamaterial to have predetermined responses at predetermined wavelengths. After a review of both the major efforts within the field of metamaterials and the field of mathematical optimization, chapters covering both gradient-based and derivative-free design methods are considered. Selected topics including surrogate-base optimization, adaptive mesh search, and genetic algorithms are shown to be effective, gradient-free optimization strategies. Additionally, new techniques for representing dielectric distributions in two dimensions, including level sets, are demonstrated as effective methods for gradient-based optimization. Each chapter begins with a rigorous review of the optimization strategy used, and is followed by numerous examples that combine the strategy with either electromagnetic simulations or analytical solutions of the scattering problem. Throughout the text, we address the strengths and limitations of each method, as well as which numerical methods are best suited for different types of metamaterial designs. This book is intended to provide a detailed enough treatment of the mathematical methods used, along with sufficient examples and additional references, that senior level undergraduates or graduate students who are new to the fields of plasmonics, metamaterials, or optimization methods; have an understanding of which approaches are best-suited for their work and how to implement the methods themselves.
Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials

Author: Jichun Li
language: en
Publisher: Springer Science & Business Media
Release Date: 2012-12-15
The purpose of this book is to provide an up-to-date introduction to the time-domain finite element methods for Maxwell’s equations involving metamaterials. Since the first successful construction of a metamaterial with both negative permittivity and permeability in 2000, the study of metamaterials has attracted significant attention from researchers across many disciplines. Thanks to enormous efforts on the part of engineers and physicists, metamaterials present great potential applications in antenna and radar design, sub-wavelength imaging, and invisibility cloak design. Hence the efficient simulation of electromagnetic phenomena in metamaterials has become a very important issue and is the subject of this book, in which various metamaterial modeling equations are introduced and justified mathematically. The development and practical implementation of edge finite element methods for metamaterial Maxwell’s equations are the main focus of the book. The book finishes with some interesting simulations such as backward wave propagation and time-domain cloaking with metamaterials.
Metamaterial Analysis and Design

Author: Habib Ammari
language: en
Publisher: Walter de Gruyter GmbH & Co KG
Release Date: 2023-11-06
Metamaterials are advanced composite materials which have exotic and powerful properties. Their complicated microstructures make metamaterials challenging to model, requiring the use of sophisticated mathematical techniques. This book uses a from-first-principles approach (based on boundary integral methods and asymptotic analysis) to study a class of high-contrast metamaterials. These mathematical techniques are applied to the problem of designing graded metamaterials that replicate the function of the cochlea.