Numerical Methods For Differential Equations

Download Numerical Methods For Differential Equations PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Numerical Methods For Differential Equations book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Introduction to Numerical Methods in Differential Equations

Author: Mark H. Holmes
language: en
Publisher: Springer Science & Business Media
Release Date: 2007-04-05
The title gives a reasonable ?rst-order approximation to what this book is about. To explain why, let’s start with the expression “di?erential equations.” These are essential in science and engineering, because the laws of nature t- ically result in equations relating spatial and temporal changes in one or more variables.Todevelopanunderstandingofwhatisinvolvedin?ndingsolutions, the book begins with problems involving derivatives for only one independent variable, and these give rise to ordinary di?erential equations. Speci?cally, the ?rst chapter considers initial value problems (time derivatives), and the second concentrates on boundary value problems (space derivatives). In the succeeding four chapters problems involving both time and space derivatives, partial di?erential equations, are investigated. This brings us to the next expression in the title: “numerical methods.” This is a book about how to transform differential equations into problems that can be solved using a computer.The fact is that computers are only able to solve discrete problems and generally do this using ?nite-precision arithmetic. What this means is that in deriving and then using a numerical algorithmthecorrectnessofthediscreteapproximationmustbeconsidered,as must the consequences of round-o? error in using ?oating-point arithmetic to calculatetheanswer.Oneoftheinterestingaspectsofthesubjectisthatwhat appears to be an obviously correct numerical method can result in complete failure. Consequently, although the book concentrates on the derivation and use of numerical methods, the theoretical underpinnings are also presented andusedinthedevelopment.
Numerical Methods for Ordinary Differential Equations

Author: David F. Griffiths
language: en
Publisher: Springer Science & Business Media
Release Date: 2010-11-11
Numerical Methods for Ordinary Differential Equations is a self-contained introduction to a fundamental field of numerical analysis and scientific computation. Written for undergraduate students with a mathematical background, this book focuses on the analysis of numerical methods without losing sight of the practical nature of the subject. It covers the topics traditionally treated in a first course, but also highlights new and emerging themes. Chapters are broken down into `lecture' sized pieces, motivated and illustrated by numerous theoretical and computational examples. Over 200 exercises are provided and these are starred according to their degree of difficulty. Solutions to all exercises are available to authorized instructors. The book covers key foundation topics: o Taylor series methods o Runge--Kutta methods o Linear multistep methods o Convergence o Stability and a range of modern themes: o Adaptive stepsize selection o Long term dynamics o Modified equations o Geometric integration o Stochastic differential equations The prerequisite of a basic university-level calculus class is assumed, although appropriate background results are also summarized in appendices. A dedicated website for the book containing extra information can be found via www.springer.com
Numerical Methods for Differential Equations

With emphasis on modern techniques, Numerical Methods for Differential Equations: A Computational Approach covers the development and application of methods for the numerical solution of ordinary differential equations. Some of the methods are extended to cover partial differential equations. All techniques covered in the text are on a program disk included with the book, and are written in Fortran 90. These programs are ideal for students, researchers, and practitioners because they allow for straightforward application of the numerical methods described in the text. The code is easily modified to solve new systems of equations. Numerical Methods for Differential Equations: A Computational Approach also contains a reliable and inexpensive global error code for those interested in global error estimation. This is a valuable text for students, who will find the derivations of the numerical methods extremely helpful and the programs themselves easy to use. It is also an excellent reference and source of software for researchers and practitioners who need computer solutions to differential equations.