Numerical Methods For Black Box Software In Computational Continuum Mechanics

Download Numerical Methods For Black Box Software In Computational Continuum Mechanics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Numerical Methods For Black Box Software In Computational Continuum Mechanics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Numerical Methods for Black-Box Software in Computational Continuum Mechanics

Author: Sergey I. Martynenko
language: en
Publisher: Walter de Gruyter GmbH & Co KG
Release Date: 2023-10-24
The organization of the material is presented as follows: This introductory chapter I represents a theoretical analysis of the computational algorithms for a numerical solution of the basic equations in continuum mechanics. In this chapter, the general requirements for computational grids, discretization, and iterative methods for black-box software are examined. Finally, a concept of a two-grid algorithm for (de-)coupled solving multidimensional non-linear (initial-)boundary value problems in continuum mechanics (multiphysics simulation) in complex domains is presented. Chapter II contains descriptions of the sequential Robust Multigrid Technique which is developed as a general-purpose solver in black-box codes. This chapter presents the main components of the Robust Multigrid Technique (RMT) used in the two-grid algorithm (Chapter I) to compute the auxiliary (structured) grid correction. This includes the generation of multigrid structures, computation of index mapping, and integral evaluation. Finite volume discretization on the multigrid structures will be explained by studying a 1D linear model problem. In addition, the algorithmic complexity of RMT and black-box optimization of the problem-dependent components of RMT are analysed. Chapter III provides a description of parallel RMT. This chapter introduces parallel RMT-based algorithms for solving the boundary value problems and initial-boundary value problems in unified manner. Section 1 presents a comparative analysis of the parallel RMT and the sequential V-cycle. Sections 2 and 3 present a geometric and an algebraic parallelism of RMT, i.e. parallelization of the smoothing iterations on the coarse and the levels. A parallel multigrid cycle will be considered in Section 4. A parallel RMT for the time-dependent problems is given in Section 5. Finally, the basic properties of parallel RMT will be summarized in Section 6. Theoretical aspects of the used algorithms for solving multidimensional problems are discussed in Chapters IV. This chapter contains the theoretical aspects of the algorithms used for the numerical solving of the resulting system of linear algebraic equations obtained from discrete multidimensional (initial-)boundary value problems.
Mesh Methods for Boundary-Value Problems and Applications

This book gathers papers presented at the 13th International Conference on Mesh Methods for Boundary-Value Problems and Applications, which was held in Kazan, Russia, in October 2020. The papers address the following topics: the theory of mesh methods for boundary-value problems in mathematical physics; non-linear mathematical models in mechanics and physics; algorithms for solving variational inequalities; computing science; and educational systems. Given its scope, the book is chiefly intended for students in the fields of mathematical modeling science and engineering. However, it will also benefit scientists and graduate students interested in these fields.
Verification and Validation in Scientific Computing

Author: William L. Oberkampf
language: en
Publisher: Cambridge University Press
Release Date: 2010-10-14
Advances in scientific computing have made modelling and simulation an important part of the decision-making process in engineering, science, and public policy. This book provides a comprehensive and systematic development of the basic concepts, principles, and procedures for verification and validation of models and simulations. The emphasis is placed on models that are described by partial differential and integral equations and the simulations that result from their numerical solution. The methods described can be applied to a wide range of technical fields, from the physical sciences, engineering and technology and industry, through to environmental regulations and safety, product and plant safety, financial investing, and governmental regulations. This book will be genuinely welcomed by researchers, practitioners, and decision makers in a broad range of fields, who seek to improve the credibility and reliability of simulation results. It will also be appropriate either for university courses or for independent study.