Number Fields

Download Number Fields PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Number Fields book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Number Fields

Requiring no more than a basic knowledge of abstract algebra, this text presents the mathematics of number fields in a straightforward, pedestrian manner. It therefore avoids local methods and presents proofs in a way that highlights the important parts of the arguments. Readers are assumed to be able to fill in the details, which in many places are left as exercises.
The Theory of Algebraic Number Fields

Author: David Hilbert
language: en
Publisher: Springer Science & Business Media
Release Date: 2013-03-14
Constance Reid, in Chapter VII of her book Hilbert, tells the story of the writing of the Zahlbericht, as his report entitled Die Theorie der algebra is chen Zahlkorper has always been known. At its annual meeting in 1893 the Deutsche Mathematiker-Vereinigung (the German Mathematical Society) invited Hilbert and Minkowski to prepare a report on the current state of affairs in the theory of numbers, to be completed in two years. The two mathematicians agreed that Minkowski should write about rational number theory and Hilbert about algebraic number theory. Although Hilbert had almost completed his share of the report by the beginning of 1896 Minkowski had made much less progress and it was agreed that he should withdraw from his part of the project. Shortly afterwards Hilbert finished writing his report on algebraic number fields and the manuscript, carefully copied by his wife, was sent to the printers. The proofs were read by Minkowski, aided in part by Hurwitz, slowly and carefully, with close attention to the mathematical exposition as well as to the type-setting; at Minkowski's insistence Hilbert included a note of thanks to his wife. As Constance Reid writes, "The report on algebraic number fields exceeded in every way the expectation of the members of the Mathemati cal Society. They had asked for a summary of the current state of affairs in the theory. They received a masterpiece, which simply and clearly fitted all the difficult developments of recent times into an elegantly integrated theory.