Nuggets Of Number Theory


Download Nuggets Of Number Theory PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Nuggets Of Number Theory book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Nuggets of Number Theory


Nuggets of Number Theory

Author: Roger B. Nelsen

language: en

Publisher: American Mathematical Soc.

Release Date: 2018-08-07


DOWNLOAD





Nuggets of Number Theory will attract fans of visual thinking, number theory, and surprising connections. This book contains hundreds of visual explanations of results from elementary number theory. Figurate numbers and Pythagorean triples feature prominently, of course, but there are also proofs of Fermat's Little and Wilson's Theorems. Fibonacci and perfect numbers, Pell's equation, and continued fractions all find visual representation in this charming collection. It will be a rich source of visual inspiration for anyone teaching, or learning, number theory and will provide endless pleasure to those interested in looking at number theory with new eyes. [Author]; Roger Nelsen is a long-time contributor of ``Proofs Without Words'' in the MAA's Mathematics Magazine and College Mathematics Journal. This is his twelfth book with MAA Press.

Recreations in the Theory of Numbers


Recreations in the Theory of Numbers

Author: Albert H. Beiler

language: en

Publisher: Courier Corporation

Release Date: 1964-01-01


DOWNLOAD





Number theory proves to be a virtually inexhaustible source of intriguing puzzle problems. Includes divisors, perfect numbers, the congruences of Gauss, scales of notation, the Pell equation, more. Solutions to all problems.

Explorations in Number Theory


Explorations in Number Theory

Author: Cam McLeman

language: en

Publisher: Springer Nature

Release Date: 2022-12-18


DOWNLOAD





This innovative undergraduate textbook approaches number theory through the lens of abstract algebra. Written in an engaging and whimsical style, this text will introduce students to rings, groups, fields, and other algebraic structures as they discover the key concepts of elementary number theory. Inquiry-based learning (IBL) appears throughout the chapters, allowing students to develop insights for upcoming sections while simultaneously strengthening their understanding of previously covered topics. The text is organized around three core themes: the notion of what a “number” is, and the premise that it takes familiarity with a large variety of number systems to fully explore number theory; the use of Diophantine equations as catalysts for introducing and developing structural ideas; and the role of abstract algebra in number theory, in particular the extent to which it provides the Fundamental Theorem of Arithmetic for various new number systems. Other aspects of modern number theory – including the study of elliptic curves, the analogs between integer and polynomial arithmetic, p-adic arithmetic, and relationships between the spectra of primes in various rings – are included in smaller but persistent threads woven through chapters and exercise sets. Each chapter concludes with exercises organized in four categories: Calculations and Informal Proofs, Formal Proofs, Computation and Experimentation, and General Number Theory Awareness. IBL “Exploration” worksheets appear in many sections, some of which involve numerical investigations. To assist students who may not have experience with programming languages, Python worksheets are available on the book’s website. The final chapter provides five additional IBL explorations that reinforce and expand what students have learned, and can be used as starting points for independent projects. The topics covered in these explorations are public key cryptography, Lagrange’s four-square theorem, units and Pell’s Equation, various cases of the solution to Fermat’s Last Theorem, and a peek into other deeper mysteries of algebraic number theory. Students should have a basic familiarity with complex numbers, matrix algebra, vector spaces, and proof techniques, as well as a spirit of adventure to explore the “numberverse.”